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Abstract 

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm 

introduced by William S. Cleveland in 1979.  The procedure uses M-estimation, incorporating Iteratively 

Reweighted Least Squares, and is particularly useful in showing smoothed values of the dependent y-variable 

in x-y scatter plots.  Loess (locally weighted regression) was introduced by Cleveland and Susan J. Devlin in 

1988 as an extension of Lowess – but without M-estimation – applied to the estimation of regression surfaces.  

This aim of this article is to show, through examples, how the theory of least squares and M-estimation is 

applied to regression analysis. 
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Introduction 

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm 

proposed by William S. Cleveland (Cleveland 1979).  For n data pairs ( ),i ix y  1,2, ,i n= …  where the x-

values are considered as independent and error-free and the y-values as measurements subject to error, the 

algorithm assumes the n points are ordered from smallest to largest x-value and selects a ‘smoothing point’ 

point, say ( ),s sx y  1,2, ,s n= …  and its q nearest neighbours, noting that the smoothing point ( ),s sx y  is a 

neighbour of itself.  These q nearest neighbours are a subset of the n data pairs and the algorithm fits a low-

order polynomial to the subset that is used to calculate the estimate ( )ˆ,s sx y .  Cleveland (1979, p. 833) 

suggests that polynomials of degree 1: 0 1y xβ β= +  (a straight line) or degree 2: 2
0 1 2y x xβ β β= + +  (a 

quadratic curve) are sufficient for most purposes and notes that the polynomial of degree 1 “should almost 

always provide adequate smoothed points and computational ease.”  In this paper we only consider 

polynomials of degree 1.  Now, since only two points are required to define a straight line, and q will always 

be greater than 2 in practice, least squares is used to determine estimates of the parameters of the line of best 

fit with local weights 0 1jw≤ ≤  for 1,2, ,j q= …  as functions of the distances from the smoothing point 

( ),s sx y  to each of the q nearest neighbours multiplied by robustness weights 0 1r
jw≤ ≤ .  The local weight 

function most often used in Lowess smoothing is known as tricube (more about this later) and yields weights 

that decrease from 1 at the smoothing point to 0 at the furthest of the q points.  The robustness weights are 

computed from weighting functions associated with M-estimation (more about these later) and are functions 

of residuals ˆi i iv y y= − .  The initial values of the robustness weights are unity.  After computing 0 1,β β , the 

estimate ŝy  at the smoothing point is computed from 0 1ŝ sy xβ β= +  and the residual ˆs s sv y y= − .  Now 

the smoothing point index is increased by one, i.e., 1s s= +  and the next subset of q nearest neighbours 

determined (which may be the same subset as the previous reference point) with weights that are the 

product of local weights and robustness weights and a new line of best fit computed yielding the next 

estimate ŝy .  And this process is repeated until s n=  and residuals are known at all points, and a new set 

of robustness weights 0 1r
iw≤ ≤  for 1,2, ,i n= …  computed.  Now the entire process is repeated for 

1,2, ,s n= …  and the next set of robustness weights computed and so on until the robustness weights 

converge to acceptable values.  This process of refining the robustness weights is known as Iteratively 
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Reweighted Least Squares IRLS and is a feature of M-estimation.  In practice, two or three iterations are 

usually sufficient to give ‘final’ estimates ŝy  at the smoothing points. 

Loess (locally weighted regression) is a procedure for fitting a surface using multivariate smoothing and was 

introduced by Cleveland and Susan J. Devlin in 1988 as an extension of Lowess to surface fitting but without 

the use of robustness weights and iteratively reweighted least squares. 

As an example of Lowess smoothing consider the Global Warming trend line in Figure 1 

 
Figure 1.  NASA/GISS1 Global Land-Ocean Temperature Index2 1880-2019 

The trend line is a Lowess smoothed curve passing through points estimated from a 

robust linear regression of a moving window of ( )floorq f n= ×  data points where 

( )floor  rounds down to the nearest integer, ( )2019 1880 1 140n = − + = ,

0.072f =  giving 10q = .  The data are shown in Appendix A. 

This paper is primarily directed at understanding how the Lowess smoothed curve in Figure 1 is obtained 

and to show that Lowess is a useful procedure for analysing time series data encountered in surveying 

applications, e.g., monitoring the position of objects over a period of time, analysing automatic height 

recording equipment such as tide gauges, crustal motion surveys, etc.  Lowess makes use of least squares and 

robust estimation procedures and we have included sections on least squares setting out the theory and 

relevant formula for the solution of linear regression problems as well as sections that show least squares 

estimates as equivalent to Best Linear Unbiased Estimates (BLUE) and Maximum Likelihood Estimates 

(MLE).   

 

1 Goddard Institute of Space Studies (GISS) is located at Columbia University, New York and is a laboratory in the 

Earth Sciences Division of the National Aeronautics and Space Administration’s (NASA) Goddard Space Flight Centre.  

GISS is affiliated with the Columbia Earth Institute and School of Engineering and Applied Science. 
2 The Land-Ocean Temperature Index (L-OTI) combines surface air temperature anomalies with sea surface temperature 

anomalies (ships, buoys, satellites).  The anomalies in 0C are related to a global average for the years 1951-1980. 

(https://data.giss.nasa.gov/gistemp/faq/#q103) 



 

3 

 

These are followed by a section outlining the principles of M-Estimation that includes robust weighting 

schemes and iteratively reweighted least squares.  And after this is a detailed explanation of the Lowess 

procedure.  Of course, if least squares and M-estimation are familiar to you then those sections can be 

skipped.  We have included worked examples relevant to particular topics and there are Appendices with 

detailed explanations of related topics 

Nomenclature 

The following notation has been used, noting that vectors are denoted by bold lowercase letters and matrices 

by bold uppercase letters. 

Symbol Meaning Definition 

B ( ),n m  coefficient matrix  

b 1.4826b ≈  ˆ MADbσ = ⋅  

c tuning constant  

d ( ),1n vector of constant terms  

∆  random error in Gauss’ error function  

{ }E X  expected value or expectation of X  

e ( ),1n  vector of random errors  

( )XF x  cumulative distribution function  

( )Xf x  probability density function  

f proportion of points used in smoothing 0 1f< ≤   

f ( ),1n  vector of numeric terms = −f d l  

g weighted mean  

h measure of precision in Gauss’ error function; maximum 

x-distance from smoothing point to a nearest neighbour 

 

J Jacobian matrix of partial derivatives  

k scale factor for residuals k c S=  

L likelihood function  

l ( ),1n  vector of measurements  

m number of unknowns in least squares estimate  

M sample median or median of variables iv  1i n= …  ( )median iM v=  

MAD Median of the Absolute Deviations from the data’s 

median 
( )MAD median iv M= −  

n number of measurements or data pairs  

N ( ),m m  coefficient matrix of normal equations T=N B WB  

q number of nearest neighbours ( )floorq f n= ×  

Q logarithm of likelihood function L  

Q symmetric cofactor matrix containing estimates of 

variances (diagonal elements) and covariances (off-

diagonal elements) 

1−=Q W  

r the absolute value of the x-distance from the smoothing 

point to a nearest neighbour; degrees of freedom 

 

s integer index  

S scale or variability of a set of residuals  

t ( ),1m  vector of numeric terms of normal equations T=t B Wf  
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Symbol Meaning Definition 

iu  scaled residual of ith point i iu v c= ɶ  

,i iv vɶ  residual of ith point, standardized residual ˆ ,i i i i iv y y v v S= − =ɶ  

v ( ),1n  vector of residuals  

( )w v  weight function ( ) ( )w v v vψ=  

iw  weight associated with the ith point  

W ( ),n n  square symmetric weight matrix (diagonal if 

measurements are independent) 

 

x̂  ( ),1m  vector of least squares estimates of parameters 1ˆ −=x N t  

,i ix y  data pairs for 1,2, ,i n= …   

,s sx y  x,y values of the smoothing point  

îy  estimated y-value  

0 1,β β  coefficients of 1st order polynomial  

µ  mean  

( )vρ  arbitrary function of residuals ( ) ( )v v dvρ ψ= ∫  

2ˆ, ,σ σ σ  standard deviation, estimate of standard deviation, 

variance 

 

ϕ  least squares function to be minimised  

( )vψ  influence function ( ) ( )d
v v

dv
ψ ρ=  

Least Squares: Brief history and two simple examples 

The first published work on least squares was by the French mathematician A.M. Legendre in 1805 

(Nouvelles Methodes pour la Determination des Orbites des Cometes).  Legendre's work of viii + 80 pages 

contained an Appendix of 9 pages where he set out his method "Sur la Methode des moindres quarres" and 

gave a worked example.  Sur la Methode des moindres quarres translates to On the method of least squares. 

C.F. Gauss (1809) published "Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem 

Ambientium" [Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections] in 

which he states his rule: "... the most probable system of values of the quantities ... will be that in which the 

sum of the squares of the differences between the actually observed and computed values multiplied by 

numbers that measure the degree of precision, is a minimum" and bases this on his error function 

( ) 2 2hh
e ∆φ ∆
π

−=  where ∆  are random errors and h is a measure of precision.  We now know this as the 

'normal' law of error (normal distribution).  Gauss gave examples of his method of least squares and stated 

that he had been using this method since 1795. 

This claim of priority in the discovery of the method of least squares sparked an international debate 

(Plackett 1972, Stigler 1981) but modern treatments of the method usually acknowledge Gauss as the 

inventor.  Also, it has been demonstrated that the method does not require observations having particular 

statistical distributions, merely that they be free of observational blunders and systematic errors.  And 

modern treatments use matrix algebra to describe the estimation process. 

Both Gauss and Legendre developed the method of least squares in conjunction with studies in orbital 

mechanics, particularly Gauss who used the method to help rediscover the minor planet Ceres from earlier 

limited observations.  And the logical extension of Gauss’ least squares method is embodied in the Kalman 
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Filter3, a least-squares estimation process used to derive position of bodies in motion from measurements 

made at different instants of time.  The Kalman Filter was an integral part of the navigation system of the 

Apollo spacecraft and is one of the most useful applications in modern electro-mechanical systems.  GPS 

navigation and your FitBit watch wouldn’t work without least squares (and the Kalman Filter). 

Examples below will demonstrate the Least Squares method and some definitions are useful. 

First, it is assumed that we wish to estimate the values of certain quantities from measurements and that the 

nature of measurement means that every measurement contains errors.  These errors may be classified as 

blunders, systematic errors and random errors.  Blunders can be avoided by careful measurement process and 

checking and systematic errors can be eliminated or corrected by a proper understanding and calibration of 

measurement equipment and a knowledge of the environment in which the measurement is made.   

Second, if blunders and systematic errors are eliminated, then the remaining random errors can be allowed 

for by the application of small corrections known as residuals.  Hence, we write 

 measurement + residual = best estimate (1) 

where ‘best estimate’ is a modern expression of Gauss’ ‘most probable value’. 

Also, a quantity that is being measured has both a true value (forever unknown) and an estimated value (the 

best estimate) and after removing blunders and systematic errors from the measurements leaving only 

random errors of measurements, we may write 

 measurement = true value + random error (2) 

Lastly, weights and precision.  Often, a measurement may be the mean of several measurements or 

measurements may be obtained from different types of equipment or measurement processes and they may be 

of varying precision.  To allow for this in least squares estimation we may weight our measurements, where a 

weight is a positive number that reflects the degree of confidence we have in the measurement.  The greater 

the weight the more confident we are in the particular measurement.  A weight is often defined to be 

inversely proportional to an estimate of the variance of a measurement where variance is a statistical 

measure of precision.  Precise measurements have a small variance. 

Example A.  Weighted Mean 

Suppose 1,2, 3, ,i n= …  measurements il  are made of a quantity g and each measurement has an associated 

weight iw .  We may write n observation equations 

 1 1 2 2, , , n nl v g l v g l v g+ = + = + =…  

and the least squares function ϕ  as 

 ( ) ( )22 2 2 2
1 1 2 2

1 1

n n

n n i i i i
i i

g w v w v w v w v w g lϕ
= =

= + + + = = −∑ ∑⋯  

Now we wish to obtain an estimate for g that makes ( )gϕ  a minimum.  We know from calculus that ( )gϕ  

will have an optimum value (either a minimum or maximum) when 0
d

dg

ϕ
=  and we will show later that this 

optimum value will indeed be a minimum.  Hence ( ) mingϕ ⇒ when ( )
1

2 0
n

i i
i

d
w g l

dg

ϕ

=

= − =∑  and 

simplifying gives the weighted mean 

 

3 Developed by Dr R.E. Kalman in 1960.  The Kalman Filter is a recursive least squares estimation process 

particularly suited to dynamic problems associated with navigation.  It regularly appears in lists of the most 

useful algorithms of the 20th century. 
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 i i

i

w l
g

w
= ∑
∑

 

where the following summation notations are equivalent: 1 2 3
1

n

k k k n
k k

v v v v v v v
=

= = = + + + +∑ ∑ ∑ ⋯  

Example B.  Distances between Three Points on a Straight Line 

Consider the problem of determining the distances x and y between three points A,B,C on a straight line 

when measurements (of varying precision) AB, AC and BC are made. 

� � �

A B C

x y  

Figure 2 

Let the measurements 1 2 3,  and AB l AC l BC l= = =  with weights 1 2 3,  and w w w  respectively.  Write 

3n =  observation equations that will involve the 2m =  ‘unknowns’ x and y. 

 
1 1

2 2

3 3

l v x

l v x y

l v y

+ =

+ = +
+ =

 (3) 

and the least squares function ϕ  as 

 ( ) ( ) ( ) ( )2 2 22 2 2
1 1 2 2 3 3 1 1 2 2 3 3,x y w v w v w v w x l w x y l w y lϕ = + + = − + + − + −  

Now we wish to obtain estimates for x and y that make ( ),x yϕ  a minimum.  As we will demonstrate later 

( ), minx yϕ ⇒  when the partial derivatives ,
x y

ϕ ϕ∂ ∂
∂ ∂

 both equal zero and this leads to 

 
( ) ( )

( ) ( )

1 1 2 2

2 2 3 3

2 2 0

2 2 0

w x l w x y l
x

w x y l w y l
y

ϕ

ϕ

∂
= − + + − =

∂
∂
= + − + − =

∂

 

Cancelling the 2’s and simplifying gives 2m =  normal equations  

 
( )

( )
1 2 2 1 1 2 2

2 2 3 2 2 3 3

w w x w y w l w l

w x w w y w l w l

+ + = +
+ + = +

 

A Matrix Solution for Least Squares Problems 

The solution of least squares problems can be simplified by the use of matrices (and matrix algebra and 

matrix calculus) and we can use the example above to demonstrate some simple relationships 

The observation equations (3) can be arranged in a matrix form where all the unknown quantities are on the 

left-hand side of the equals sign and all the known quantities are on the right-hand side 

 
1 1 1 1

2 2 2 2

3 3 3 3

1 0

1 1

0 1

l v x v l
x

l v x y v l
y

l v y v l

     + = − −            + = + ⇒ + − − = −             + = − −          

 

or + =v Bx f  (4) 
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where v is an ( ),1n  vector of residuals, B is an ( ),n m  coefficient matrix, x is a ( ),1m  vector of unknowns 

that are to be estimated and f is an ( ),1n  vector of numeric terms where 

 = −f d l  (5) 

and d is an ( ),1n  vector of constants that is often a vector of zeros and l is an ( ),1n  vector of 

measurements.   

Associated with any set of independent measurements is a weight matrix W whose diagonal elements are the 

weights iw  for 1,2, 3, ,i n= …  and all off-diagonal elements are zero and the least squares function ϕ  can be 

written in matrix form as 

 ( ) ( ) ( )2 2 2 2
1 1 2 2

1

n
TT

n n i i
i

w v w v w v w vϕ
=

= + + + = = = − −∑x v Wv f Bx W f Bx⋯  (6) 

where the superscript T denotes matrix transpose and ( )ϕ x  is a scalar quantity (i.e. a number). 

Many least squares problems can be described by a set of observation equations in the form of (4) and the 

solutions for the unknowns in x can be obtained by minimizing the function ( )ϕ x  in the following way 

Using (6) and the rules of matrix transpose where ( )T T T T=ABC C B A… …  and noting that T =W W  since 

W is symmetric we may write 

 

( ) ( ) ( )
( )( )

2

T

T T T

T T T T T T

T T T T T

ϕ = − −

= − −

= − − +

= − +

x f Bx W f Bx

f x B Wf WBx

f Wf f WBx x B Wf x B WBx

f Wf x B Wf x B WBx  (7) 

Noting here that ( )TT T T T= =f WBx f WBx x B Wf  since each are scalar quantities   

Now with the substitutions 

   and  T T= =N B WB t B Wf  (8) 

where N is a ( ),m m  symmetric positive-definite matrix and t is a ( ),1m  vector of numeric terms and the 

least squares function (7) becomes 

 ( ) 2T T Tϕ = − +x f Wf x t x Nx  (9) 

The optimum value of ( )ϕ x  is obtained by partial differentiation with respect to the vector x  to obtain 

ϕ∂
∂x

 and then finding a set of values for x that will make this derivative equal to a vector of zeros. 

Using the rules of matrix calculus (see for example Peterson & Pederson 2012) ( )2 2T T∂
=

∂
x t t

x
 and 

( ) 2T T∂
=

∂
x Nx x N

x
 gives the partial derivative of (9) as 

 ( )2 2 2T Tϕ∂
= − + = − −

∂
t x N t Nx

x
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and 
ϕ∂
=

∂
0

x
 when a particular set of values of x, denoted here as x̂ , and called the least squares 

estimates, satisfy the normal equations 

 ˆ =Nx t  (10) 

In order for the scalar ( )ˆϕ x  to be a minimum then ( ) ( )ˆ 0ϕ ϕ− >x x  for all x near x̂  and this difference, 

using (9) and (10) is 

 

( ) ( )

( ) ( )
( ) ( )

ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ2

ˆ ˆ ˆ

ˆ ˆ

T T T T

T T T T

T T T

T T

T

ϕ ϕ− = − + + −

= − + + −

= − + +

= − − + −

= − −

x x x t x Nx x t x Nx

x Nx x Nx x Nx x Nx

x Nx x Nx x Nx

x N x x x N x x

x x N x x  (11) 

Now ( ) ( )ˆ ˆ
T

− −x x N x x  will always be positive since N is positive definite thus ( ) ( )ˆ 0ϕ ϕ− >x x  for all 

ˆ≠x x .  So, the least squares estimates x̂  locates the minimum of ( )ϕ x  and the scalar minimum value is 

 ( )ˆ ˆ ˆ ˆ ˆ2T T T T Tϕ = − + = −x f Wf x t x Nx f Wf x t  (12) 

The solution steps 

From the basic mathematical model linking measurements with quantities to be determined an observation 

equation incorporating measurement residuals can be developed and then the following sequence can be 

followed for a solution. 

1. Form a set of n observation equations in the form + =v Bx f  where = −f d l  [eq’s (4) and (5)] and 

the independent measurements l have an associated weight matrix W whose diagonal elements are the 

positive weights iw  for 1,2, 3, ,i n= …  and all off-diagonal elements are zero. 

2. Form the u normal equations =Nx t  where  and T T= =N B WB t B Wf  [eq’s (10) and (8)] 

3. Solve the normal equations for the least squares estimates 1ˆ −=x N t  that make ( )ˆϕ x  a minimum 

4. Calculate the residuals from ˆ= −v f Bx  

5. Calculate the adjusted measurements from ˆ = +l l v  

Least Squares and Propagation of Variances 

A useful benefit of the least squares process using matrices is that propagation of variances, expressed as a 

matrix operation, can be employed to the solution steps to allow estimation of the variances and covariances 

of computed quantities.  Propagation of variances (also known as error propagation) has a long association 

with least squares.  Indeed, Gauss (1809) gave expressions for the precision to be assigned to computed 

quantities using his methods and since that time, in the surveying/geodesy professions, the methods of 

propagation of variances have always been an intimate part of the least squares process. 

We apply propagation of variances to two cases, linear and non-linear and in both cases we are considering 

two vectors, y of order ( ),1n  and z of order ( ),1m  both containing random variables and each having 
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associated variance matrices 

1 2 11

2 1 22

1 2

2

2

2

n

n

n n n

y y y yy

y y y yy
yy

y y y y y

σ σ σ

σ σ σ

σ σ σ

Σ

 
 
 
 
 =
 
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 and 

1 2 11

2 1 22

1 2

2

2

2

m

m

m m m

z z z zz

z z z zz
zz

z z z z z

σ σ σ

σ σ σ

σ σ σ

Σ

 
 
 
 
 =
 
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 of orders 

( ),n n  and ( ),m m  respectively that are symmetric and where the leading-diagonal elements are variances 

and the off-diagonal elements are covariances. 

For linear functions: 

 If = +y Az b  and y and x are linearly related, A is an ( ),n m  coefficient matrix and b is an ( ),1n  

vector of constants then T
yy zzΣ Σ= A A  

For non-linear functions: 

 If ( )f=y z  and the elements of y are non-linear functions of the elements of z then T
yy yz zz yzΣ Σ= J J  

where yz

∂
=
∂
y

J
z

 is the ( ),n m  Jacobian matrix and 

1 1 1 1

1 2 3

2 2 2 2

1 2 3

1 2 3

m

yx m

n n n n

m

y y y y

z z z z

y y y y

z z z z

y y y y

z z z x

 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
 = ∂ ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂  

J

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

Cofactor matrices and the Variance Factor 

The rules of propagation of variances also apply to cofactor matrices Q that are related to variance matrices 

by a constant 2
0σ  known as the variance factor and 2

0xx xxσ= QΣ .  Cofactor matrices contain estimates of 

variances (leading-diagonal elements) and covariances (off-diagonal elements) in the form 

1 2 11

2 1 22

1 2

2

2

2

n

n

n n n

x x x xx

x x x xx
xx

x x x x x

s s s

s s s

s s s

 
 
 
 
 =
 
 
 
  

Q

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

  

Cofactor matrices Q and weight matrices W have an inverse relationship and 1 1 or − −= =Q W W Q  

An unbiased estimate of the variance factor, denoted as 2
0σ̂  can be computed from 

 2
0

ˆ
ˆ

T T T

n m r
σ

−
= =

−
v Wv f Wf x t

 (13) 

where r n m= −  is known as the degrees of freedom and is equal to the number of redundancies in the least 

squares problem. 

To apply propagation of variances to the solution steps above we first consider the vector relationship 

= −f d l  and write this in the form ( )= − +f I l d  where the term in parentheses represents the coefficient 

matrix A in the rule for propagation of variances for linear functions and 

 ( ) ( )Tff ll ll= − − = =Q I Q I Q Q  (14) 
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noting here that for estimates of variances and covariances, or weights of measurements the subscript ‘ll’ is 

dropped from llQ  and llW .  Thus, the cofactor matrix of f is also the cofactor matrix of the observations l. 

To apply propagation of variances for linear functions to the operations in the solution sequence the following 

relationships are useful 

 

( ) ( )

( ) ( )

1

1

1

1

ˆˆ ˆ

ˆ

ˆ

ˆ

T

T

T

−

−

−

−

= = = − = +

= − = + −

= − = −

= − = − +

t B W f x N t v f Bx l l v

f BN t l f Bx

f BN B Wf d Bx

I BN B W f B x d

 

and propagation of variances gives the following results 

 ( ) ( )TT T T T
tt ff= = = =Q B W Q B W B WQWB B WB N  

 ( ) ( )1 1 1 1 1
ˆˆ

T

xx tt
− − − − −= = =Q N Q N N NN N  (15) 

 

( ) ( )
( )( )

1 1

1 1

1

T
T T

vv ff

T T

T

− −

− −

−

= − −

= − −

= −

Q I BN B W Q I BN B W

Q BN B I WBN B

Q BN B  

 

( ) ( )ˆ̂ ˆˆ

1

T

xxll

T

vv

−

= − −

=

= −

Q B Q B

BN B

Q Q  

Example.  Least Squares Linear Regression 

Consider the simple regression problem of fitting the straight line 0 1y xβ β= +  through a set of 35n =  

data points ( ),i ix y  1,2, ,i n= … .  The x-values are considered to be error free and the y-values are 

measurements subject to error and each having an associated weight  for 1,2, ,iw i n= … .  A minimum of 

two data points is necessary for determining estimates of the two parameters 0 1,β β  (the ‘unknowns’) and 

since there are a greater number than the minimum (i.e., redundant measurements), least squares can be 

used to determine 0 1,β β  and hence the best estimates 0 1î iy xβ β= +  noting that the ‘hat’ symbol ( )^  

denotes an estimate of a quantity.  The data and a scatterplot are shown below in Table 1 and Figure 3 and 

are taken from Table 2.1 of Draper & Smith (1981) 
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   x      y       w 
  1.15   0.99   1.24028 
  1.90   0.98   2.18244 

  3.00   2.60   7.84930 
  3.00   2.67   7.84930 
  3.00   2.66   7.84930 
  3.00   2.78   7.84930 
  3.00   2.80   7.84930 

  5.34   5.92   7.43652 
  5.38   5.35   6.99309 
  5.40   4.33   6.78574 
  5.40   4.89   6.78574 
  5.45   5.21   6.30514 

   x      y       w 
  7.70   7.68   0.89204 
  7.80   9.81   0.84420 
  7.81   6.52   0.83963 
  7.85   9.71   0.82171 
  7.87   9.82   0.81296 
  7.91   9.81   0.79588 
  7.94   8.50   0.78342 

  9.03   9.47   0.47385 
  9.07  11.45   0.46621 
  9.11  12.14   0.45878 
  9.14  11.50   0.45327 
  9.16  10.65   0.44968 
  9.37  10.64   0.41435 

   x      y       w 
 10.17   9.78   0.31182 
 10.18  12.39   0.31079 
 10.22  11.03   0.30672 
 10.22   8.00   0.30672 
 10.22  11.90   0.30672 
 10.18   8.68   0.31079 
 10.50   7.25   0.28033 
 10.23  13.46   0.30571 
 10.03  10.19   0.32680 
 10.23   9.93   0.30571 

 

Table 1.  Data for Weighted Least Squares Linear Regression (Draper & Smith, 1981, Table 2.1)  

 

 

Figure 3.  X,Y scatterplot.  Data from Draper & Smith (1981, Table 2.1) 

 

In Table 1, the values in the columns headed w are weights and they have been derived in the following 

manner.  There are 5 groupings of data associated with mean x-values 3.00, 5.39, 7.84, 9.15 and 10.22.  For 

each of these groups a sample variance ( )22

1

1

1

n

k
k

s y y
n =

= −
− ∑  is calculated giving the set 

2

3.00 5.39 7.84 9.15 10.22

0.0072 0.3440 1.7404 0.8683 3.8964

x

s

         =           
.  A plot of these values revealed a quadratic relationship 

and a least squares solution for the parameters yielded 2 21.5329 0.7334 0.0883s x x= − + .  This equation 

was used to compute 2
is  for each ix  replacing x ; and then using the general relationship that a weight is 

inversely proportional to a variance, each iw  was computed from 21i iw s= .  [Note, in Smith & Draper 

(1981, Table 2.1), the second weight was incorrectly shown as 2.18224] 
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To solve for the 2m =  estimates of the parameters 0 1,β β , begin with observation equations having the 

general form of (1) 

 ˆi i iy v y+ =  

where iv  denotes the residual of the ith point and îy  denotes the best estimate and rearrange these so that 

unknown quantities are on the left-hand-side of the equals sign and known quantities on the right-hand side 

 ˆi i iv y y− = −  

Write the m observation equations and gather the terms in the matrix form + =v Bx f  where B is an 

(n,m) matrix of coefficients, x is a (m,1) vector of unknowns and f is an (n,1) vector of numeric terms 

 

1 0 1 1 1 1 1 1

2 0 1 2 2 2 2 0 2

1

0 1

1

1
  or  

1n n n n n n

v x y v x y

v x y v x y

v x y v x y

β β

β β β

β

β β

     − − = − − − −     
      − − = − − − −      ⇒ + = + =      =             − − = − − − −          

v Bx f
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

 

Form the m normal equations 

 ( )     or    T T= =B WB x B Wf Nx t  

where T=N B WB  is an (m,m) symmetric coefficient matrix and T=t B Wf  is a (m,1) vector of numeric 

terms, and W is an (n,n) diagonal matrix where the leading-diagonal elements are the weights 

1 2 3, , , , nw w w w…  associated with the measurements.  In this example 

1 1

2 1
2

1 2

1 2

0 0 1

1 1

7

1 0 0 1

0

0

88.553540 409.880783

409.880783 2263.4536 8

0 1

1 1 1

i i i

n i i i i

n n

w x

w w xw x

x x x w x w x

w x

x x x

   − −   
        − − − − −        = = =        − − −               − −      

− − −
=
− − −

∑ ∑
∑ ∑

N

t

⋯

⋯ ⋯

⋯ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯

1 1

2 2 398.701094

22 4

0 0

0

72.075 12

0

0

0

0

i i

n i i i

n n

w y

w y w y

w x y

w y

   −   
        −        = =                        −      

∑
∑

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

  

Solve the normal equations to obtain the (m,1) vector of least squares estimates x̂  of the unknowns x 

using 

 ( ) 1
1ˆ T T

− −= =x B WB B Wf N t  

where the superscript –1 denotes matrix inverse defined as 1− =NN I  and I is the Identity matrix.  In this 

example 11 12

21 22

n n

n n

 
 =  
  

N  with 

( )
22 121

2
21 11

11 22 12

6.9785 e-02 1.2637 e-021

1.2637 e-02 2.7302 e-03

n n

n nn n n

−
   − −   = =   − −   −    

N  and the 

solutions for 0 1

1

6.9785 e-02 1.2637 e-02 398.701094 0.889131
ˆ

1.2637 e-02 2.7302 e-03 2272.075412 1.164819

β

β
−

       − −       = = = =       −              
x N t  

It is quite common in the literature to show the normal equations for linear regression in the following form 

 
( ) ( )
( ) ( )

0 1

2
0 1

i i i i i

i i i i i i i

w w x w y

w x w x w x y

β β

β β

+ =

+ =
∑ ∑ ∑
∑ ∑ ∑

 (16) 

and solutions for the parameters 0 1,β β  as 
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( ) ( )

2

0 12 22 2

i i i i i i i i i i i i i i i i i

i i i i i i i i i i

w x w y w x w x y w w x y w x w y

w w x w x w w x w x
β β

− −
= =

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑

 (17) 

The estimate of the variance factor is obtained from (13) and in this example 

 2
0

ˆ 2334.719471 2292.058377 42.661094
ˆ 1.292760

33 33

T T T

m n r
σ

− −
= = = = =

−
v Wv f Wf x t

 

and the estimates of the variances and covariances of the parameters can be obtained from (15) and the 

definition 2
0xx xxσ= QΣ  to give, in this example 

 0 10

0 1 1

2

2 1
02

6.9785 e-02 1.2637 e-02 0.090215 0.016337
1.292760

1.2637 e-02 2.7302 e-03 0.016337 0.003529xx

β ββ

β β β

σ σ
σ

σ σ

−
     − −     = = = =     − −         

NΣ  

and the estimated standard deviations of the parameters are: 
0 1

0.3004 and 0.0594β βσ σ= =  

The regression line in this example has the equation ˆ 0.8891 1.1648y x= − +  and is shown in Figure 4. 

 

 

Figure 4.  X,Y scatterplot with regression line ˆ 0.8891 1.1648y x= − + . 

Data from Draper & Smith (1981, Table 2.1) 

The Least Squares Estimate is the Best Linear Unbiased Estimate (BLUE) 

The least squares estimate x̂  has certain useful statistical properties. 

Firstly, it is unbiased which means that the expected value of the estimate is the true value which can be 

expressed as 

 { }ˆE =x x  (18) 

{ }.E  denotes expectation and the expectation of a random variable X is defined as the average value Xµ  of 

the variable over all possible values. 
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In the case of a continuous random variable { } ( )X XE X x f x dxµ

+∞

−∞

= = ∫  where the random variable X 

takes the value x and ( )Xf x  is the probability density function.   

In the case of a discrete random variable { } ( )
1

N

X k k
k

E X x P xµ
=

= = ∑  where ( )kP x  is the probability.  For 

N possible values kx  of the random variable X, each having equal probability ( ) 1kP x N=  (which is a 

constant), then the expectation { }
1

1
N

X k
k

E X x
N

µ
=

= = ∑ . 

Following Cross (1994, Section 6), to prove that x̂  is an unbiased estimate of the true (but unknown) value 

x consider equations (1) and (2) and the related matrix expressions ˆ+ =v Bx f  and = +f Bx e  where 

= −f d l  and e is a vector of random errors drawn from a population whose mean value { }e Eµ = =e 0 .  

Equating these expressions gives 

 ˆ+ = = − +v Bx f e Bx  (19) 

With expectations { }E =e 0 , { }E =x x  and using the rules of expectations4 (noting that B is a matrix of 

constants) then 

 

{ } { }
{ } { }
{ } { }

E E

E E

E E

= − +

= − +
= − +

=

f e Bx

e Bx

e B x

Bx  (20) 

Now, using (10) and (8) ( ) 1
ˆ T T

−
=x B WB B Wf  and 

 { } ( ){ } ( ) { }
1 1

ˆ T T T TE E E
− −

= =x B WB B Wf B WB B W f  

and using (20) 

 { } ( ) 1
ˆ T TE

−
= =x B WB B WBx x  (21) 

since ( ) 1
T T

−
=B WB B WB I .  Thus { }ˆE =x x  and the least squares estimate x̂  is an unbiased estimate of 

x. 

The second useful property of least squares is that the estimate x̂  is the ‘best’ in the sense that of all the 

possible estimates it is the one with the ‘minimum’ variance matrix and re-stating the previous result (15) 

 1
ˆˆxx

−=Q N  (22) 

remembering that the cofactor matrix ˆˆxxQ  contains estimates of the variances and covariances of the 

elements of the least squares estimates x̂  and 1−N  is the inverse of the coefficient matrix of the normal 

equations (10). 

 

4 If a,b are constants then { }E a a=  and { } { } { } { }E aX b E aX E b aE X b+ = + = + .  If A,b are 

matrices/vectors of constants then { } { }E E+ = +Ax b A x b  
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The trace of ˆˆxxQ  denoted ( )ˆˆtr xxQ  is the sum of the elements along the leading diagonal, and, for all the 

possible estimates (each with their own variance matrix) the minimum variance matrix is the one with the 

smallest trace.  [Note that ( )tr A  is only defined for square matrices A] 

Now to show that the least squares estimate x̂  is the ‘best’, i.e., ( )ˆˆtr xxQ  is the minimum then (following 

Cross 1994) consider an unbiased estimate ′x  obtained from a set of linear equations 

 ′ =x Hf  (23) 

where f is given in (19) and H is a ( ),u n  coefficient matrix (a linear transformation) and 

 { } { } { }E E E′ = =x Hf H f  (24) 

Now { }E =f Bx  is given in (20) and if ′x  is unbiased then { }E ′ =x x  and (24) becomes 

 { }E ′ = =x HBx x  (25) 

and the necessary condition for (25) is that 

 =HB I  (26) 

Applying the rule for propagation of variances to (23) gives T
x x ff′ ′ =Q HQ H  and since ff =Q Q  from (14) 

and noting that 1−=Q W  is a diagonal matrix of positive elements then 

 T
x x′ ′ =Q HQH  (27) 

Hence the problem is to find the linear transformation H which satisfies (26) whilst minimizing the trace of 

THQH , i.e. we require 

 ( )tr minimumT ⇒HQH  

subject to 

 − =HB I 0  

To achieve this (minimise a function subject to conditions) a mathematical optimization technique known as 

the method of Lagrange multipliers (Lagrange 1788, Vol. 1, Sect IV) is used where the function to be 

optimized is the Lagrangian L 

 ( ) ( )tr 2T TL = + −HQH k HB I  (28) 

where k is a ( ),1m  vector of Lagrange multipliers and the 2 is inserted as a convenience, noting that 

( )T −k HB I  a row-vector containing m zeros.  If K is a ( ),m m  matrix whose leading diagonal is the 

elements of k then ( ) ( )( )trT − = −k HB I HB I K  and (28) becomes 

 

( ) ( )( )
( ) ( ) ( )

tr tr 2

tr 2 tr 2 tr

T

T

L = + −

= + −

HQH HB I K

HQH HBK IK  (29) 

L will be an optimum value when the partial derivatives of L with respect to the elements of H are zero, i.e., 

when  

 2 2 T TL∂
= + =

∂
HQ K B 0

H
 (30) 
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And this optimum value will be a minimum since 
2

2
2

L∂
= >

∂
Q 0

H
 

Note here that two rules of matrix differentiation of traces have been employed (see for example Peterson & 

Pederson 2012): 

• ( )tr T T∂
= +

∂
ABA AB AB

A
 (i) 

• ( )tr T∂
=

∂
AB B

A
 (ii) 

 Now since Q  is diagonal (and symmetric), then using (i) gives ( )tr 2T T∂
= + =

∂
HQH HQ HQ HQ

H
 

and using (ii) gives ( ) ( )tr
T T T∂

= =
∂

HBK BK K B
H

 

Cancelling the 2’s in (30) and rearranging gives 

 T T= −HQ K B  

and post-multiplying both sides of the equation by 1− =Q W  (and noting 1− =QQ I ) gives 

 T T= −H K B W  (31) 

Post-multiplying both sides of (31) by B gives T T= −HB K B WB  but from (26) =HB I  hence 

T T= −I K B WB  which by post-multiplication by ( ) 1
T

−
B WB  yields 

 ( ) 1
T T

−
= −B WB K  (32) 

Substituting this result into (31) gives an expression for the linear transformation H as 

 ( ) 1
T T

−
=H B WB B W  (33) 

Now, from (23) ′ =x Hf  so post-multiplying both sides of (33) with the vector of numeric terms f gives 

 ( ) 1
T T

−
′ =x B WB B Wf  (34) 

And ′x  is the estimate of x that has a cofactor matrix Q  with minimum trace. 

Comparing equations (34) with equations (10) and (8) we see ′x  is identical to the least squares estimate x̂  

and we have proved that the least squares estimate has a covariance matrix with smaller trace than any 

other linear unbiased estimate (Cross 1994). 

The Least Squares Estimate is the Maximum Likelihood Estimate (MLE) 

Least squares theory does not require a specified distribution of random errors (or residuals) although most of 

the usual statistical testing associated with the assessment of results assumes that the random errors (or 

residuals) are from a multinormal distribution of random vectors with a probability density function (Mikhail 

1976) 

 ( ) ( )
( )

( ) ( )1
1 2 2

1 1
, , , exp

22

T

n n
f f

π

−
      = = × − − −        

X X x xx x x x x x… µ Σ µ

Σ

 (35) 

with mean vector ( )E=x xµ  and variance matrix Σ .  In the case of a single vector of normally distributed 

random variables (35) has the familiar form (see Appendix B) 
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 ( )

2

1
21

2

x

x

x

X

x

f x e

µ

σ

σ π

 −  −    =  (36) 

with mean xµ  and variance 2
xσ . 

For the case of a least squares estimate yielding residuals v with ( )E= =
v

v 0µ  that are assumed to have a 

multinormal distribution then (35) can be expressed as 

 ( )
( )

( )1
21

2

1 1
exp

22

T
T

n
f C e

π

−− 
 = − =  

v Wv

V
v v Q v

Q

 (37) 

where Q is the cofactor matrix containing estimates of the variances of the measurements and the weight 

matrix 1−=W Q .  Minimizing the sum of the weighted squares of the residuals, i.e., minimumT ⇒v Wv , 

has the effect of maximizing ( )fV v  which is equivalent to yielding a maximum likelihood estimation that is 

explained below (Mikhail 1976). 

Suppose that parameters 1 2, , , mp p p…  are to be estimated from a sample 1 2, , , nx x x…   of random variables 

ix  that are considered to be independent and have the same probability density function ( )Xf x .  The 

sample vector ( )1 2, , , nx x x…  has the joint probability density function 

 

( ) ( ) ( ) ( )

( )

1 2 1 2 1 1 2 1 1

1

1

, , , ; , , , ; , , ; , , ; , ,

; , ,

n m m m n m

n

i m

i

L x x x p p p f x p p f x p p f x p p

f x p p
=

= × × ×

=∏

… … … … ⋯ …

…  (38) 

Here we are extending a statistical rule for two independent continuous random variables x and y that states 

that the joint probability density function ( ),f x y  is the product of their marginal distributions ( )g x  and 

( )h y .  The density functions ( )if x  are functions of the unknown parameters 1 2, , , mp p p…  that are 

themselves related to the sample values ( ), ,i i i np g x x= … .  The Maximum Likelihood Estimates îp  are 

those that maximize the joint probability density L.  This leads to the system 

 ( )0  or  ln 0
i i

L
L

p p

∂ ∂
= =

∂ ∂
 (39) 

since ln is a monotone increasing function. 

Example.  Maximum Likelihood Estimate of Linear Regression Parameters 

Consider a simple linear regression problem of fitting the line 0 1y xβ β= +  through a set of data points 

( ),i ix y  1,2, ,i n= …  where the x-values are considered error-free and the y-values are subject to error.  The 

Maximum Likelihood Estimates (MLE) of the parameters 0 1,β β  can be determined in the following manner. 

First we assume that the residuals ˆi i iv y y= −  where îy  estimates, are normally distributed with a mean 

0vµ =  and a variance of 2σ , i.e., ( )20,v N σ∼ .  The probability density function of iv  is 

 ( )
( ) ( )2 2

2 0 1

2 22

ˆ

2 221 1 1

2 2 2

i i i i
i

y y x yv

V if v e e e

β β

σ σσ

σ π σ π σ π

     − − −       − −   −               = = =  

Then, the likelihood function L is 
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( )
( ) ( ) ( )

( )

( )

2 2 2

0 1 1 1 0 1 2 2 0 1

2 2 2

21
0 122 1

1
2

2 2 2

1 2

2

1 1 1
, , ,

2 2 2

1

2

n n

n

i i
i

x y x y x y

V n

x y

n

L f v v v e e e

e σ

β β β β β β

σ σ σ

β β

σ π σ π σ π

πσ

=

         − − − − − −        − − −                     

− − −

= = × × ×

∑
=

… ⋯

 

And the natural logarithm of the likelihood function is 

 ( ) ( ) ( )22
0 12

1

1
ln ln 2 ln

2 2 2

n

i i
i

n n
Q L x yπ σ β β

σ =

= = − − − − −∑  

The likelihood function L and its logarithm lnQ L=  are both functions of the parameters 0 1,β β  and the 

variance of the assumed normal distribution and optimizing L, which is the same as optimizing Q, is 

achieved by setting the partial derivatives equal to zero, i.e., 

 

( )

( )( ){ }

( )

0 12
10

0 12
11

2

0 12 2 4
1

1
0

1
0

1
0

2 2

n

i i
i
n

i i i
i

n

i i
i

Q
x y

Q
x y x

Q n
x y

β β
β σ

β β
β σ

β β
σ σ σ

=

=

=

∂
= − + − =

∂

∂
= − + − =

∂

∂
= − + + − =

∂

∑

∑

∑

 (40) 

And this optimum will be a maximum if 

 

2
2 2 2 2 2

2 2 2 2
0 10 1 0 1

0, 0  and  0
Q Q Q Q Q

β ββ β β β

    ∂ ∂ ∂ ∂ ∂      < < −  >         ∂ ∂ ∂ ∂ ∂ ∂  
 (41) 

Now, since 
2

2 2
0

Q n

β σ

∂
= −

∂
, 

2
2

2 2
1

1
i

Q
x

β σ

∂
= −

∂
∑  and 

2

2
0 1

1
i

Q
x

β β σ

∂
= −

∂ ∂ ∑  – noting that the following 

summation notations are equivalent: 1 2 3
1

n

k k k n
k k

x x x x x x x
=

= = = + + + +∑ ∑ ∑ ⋯  – then 

 ( ){ }
2 22 2 2

22 2

2 2 2 2 2 4
0 10 1

1 1 1
i i i i

q q Q n
x x n x x

β ββ β σ σ σ σ

         ∂ ∂ ∂            −  = −  −  − −  = −                     ∂ ∂ ∂ ∂  
∑ ∑ ∑ ∑  (42) 

And with ( )22 1
ix

n
σ µ= −∑  and 

1
ix

n
µ = ∑  we may write 

 ( )2 2 2 2 2 2 2 2 2 21 1 1 1 1 1
2 2 2i i i i i ix x x x x x

m n n n n n
σ µ µ µ µ µ µ µ= − + = − + = − + = −∑ ∑ ∑ ∑ ∑ ∑  

And since ( )22 2
in xµ = ∑  then ( )22 2 2

i in n x xσ = −∑ ∑  and (42) becomes 

 

2
2 2 2 2

2 2 2
0 10 1

Q Q Q n

β ββ β σ

    ∂ ∂ ∂       −  =         ∂ ∂ ∂ ∂  
 

So the conditions of (41) are satisfied and the optimum will be a maximum. 

Solving the first two of the three equations in (40) gives 

 
( )

( )( ){ }
0 1

0 1

0

0
i i

i i i

x y

x y x

β β

β β

+ − =
+ − =
∑

∑
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Which can be expanded and rearranged as 

 
( )

( ) ( )
0 1

2
0 1

i i

i i i i

n x y

x x x y

β β

β β

+ =

+ =
∑ ∑

∑ ∑ ∑
 

giving solutions for the parameters 0 1,β β  as 

 

( ) ( )

2

0 12 22 2

i i i i i i i i i

i i i i

x y x x y n x y x y

n x x n x x
β β

− −
= =

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

 (43) 

Comparing (43) with (17) shows that the maximum likelihood estimates of the parameters 0 1,β β  are 

identical to the least squares estimates if the weights iw  are all unity. 

M-Estimation 

An estimator is a rule (a set of equations perhaps) for calculating an estimate of a quantity from observed 

data.  An estimator is efficient if its estimates are calculated in some ‘best possible’ manner and it is 

unbiased if the difference between the expected value of the estimate and its true value is zero.  The Least 

Squares estimator is based on the rule that the sum of weighted squared-residuals is to be a minimum, i.e., 

2

1

minimum
n

i i
i

w vϕ
=

= ⇒∑  and the Maximum Likelihood Estimator is based on the rule that the likelihood 

function L is maximized, i.e., 

( )

( )21
22 1

1
2

ˆ

2

1
maximum

2

n

i i
i

y y

n
L e σ

πσ

=
− −∑

= ⇒  if the estimates are derived from 

observations (and hence residuals) drawn from a normal distribution with mean zero and variance 2σ . 

M-Estimators, originally proposed by Huber (1964) are a group of estimators that are outcomes from 

optimizing objective functions ϕ  having the general form 

 ( )
1

n

i
i

vϕ ρ
=

= ∑  (44) 

( )ivρ  is an arbitrary function of the residuals iv  having certain desirable characteristics and iv  are 

functions of measurements and parameters x  

 ˆ T
i i i i iv y y y= − = −b x  (45) 

The estimates îy  are functions of the estimates of parameters x  (to be determined) and can be expressed as 

the vector product Tb x .  For example, if 0 1î iy xβ β= +  then 0

1

ˆ 1 T
i i iy x

β

β

 
   = =       

b x  where 
1

i
ix

 
 =  
  

b  is a 

vector of coefficients, T
ib  denotes the transpose and 0

1

β

β

 
 =  
  

x  is the vector of parameters 

The ‘M’ in M-estimation can be associated with the Minimization of the objective function that is achieved 

by partial differentiation with respect to parameters x and then setting the partial derivatives to zero, i.e., 

 ( )
1

n

i
i

d d
v

d d

ϕ
ρ

=

= =∑ 0
x x

 (46) 
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These are known as normal equations and there will be one equation for each estimated parameter in x̂ .  

Solving these equations for x  will optimize ϕ  yielding either a maximum or a minimum value.  If 
2

2

d

d

ϕ
> 0

x
 

then this optimum will have a minimum value.  This is invariably the case when M-estimation is used in 

regression analysis. 

A reasonable ( ).ρ  should have the following properties 

• Always non-negative, ( ) 0vρ ≥  

• Equal to zero when its argument is zero, ( )0 0ρ =  

• Symmetric, ( ) ( )v vρ ρ= −  

• Monotone in iv  ( ) ( )1 1for 0 k k k kv v v vρ ρ+ +< < ⇒ ≤  

• Differentiable  

For example, ( ) 2v wvρ =  satisfies these requirements and ( ) 2

1 1

minimum
n n

i i i
i i

v w vϕ ρ
= =

= = ⇒∑ ∑  is the least 

squares criteria for independent measurements each having a numeric weight iw .  In least squares estimation 

the weights are usually related to the precision of the measurements, but they could also be assigned 

arbitrarily or by some rule. 

In M-estimation weights are obtained from functions of the residuals v and the weight function is defined as 

 ( )
( )v

w v
v

ψ
=  (47) 

where ( )vψ  is the influence function defined as 

 ( ) ( )d
v v

dv
ψ ρ=  (48) 

The inter-relationship between the three functions ( -, - and -functionswρ ψ ) would allow the -functionρ to be 

determined from the -functionw  by first determining the -functionψ  from (47) as ( ) ( )v v w vψ =  and then 

the -functionρ from (48) as ( ) ( )v v dvρ ψ= ∫ .  Alternatively, the -functionψ  could be defined and then 

( ) ( )v v dvρ ψ= ∫  and ( ) ( )w v v vψ= . 

Choosing certain weight functions can reduce the effects of ‘outliers’ in an estimation process where an 

outlier is usually regarded as a data element having a larger than usual residual.  Estimation processes that 

are not affected (or minimally affected) by outliers are called robust and this is a desirable feature in any 

estimation process. 

M-Estimation with Tukey’s bisquare weight function 

A weighting function, commonly known as Tukey’s bisquare weight function or biweight was introduced by 

Beaton & Tukey (1974) as 

“… a simple robustifying (weight) function of the form 

 ( ) ( )221 for 1

0 for 1

u u
w u

u

 − ≤=  >
 (49) 

which we will tag ‘biweight’, the ‘bi’ referring to the outer exponent …” 
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In (49) u is a scaled residual defined as 

 
ˆi i i

i

v y y
u

k cS

−
= =  (50) 

where k cS=  and S is a measure of scale to be calculated from the data and c is a tuning constant.  [Beaton 

& Tukey 1974, p. 151 actually define i
i

y T
u

cS

−
=  where T is their M-estimate of location and we have used 

îy .  Since 2u  is always used this difference in sign is immaterial.  The tuning constant is discussed in a 

following section.] 

Now using (47) gives ( ) ( )v v w vψ =  hence 

 ( ) ( )
2

2
2

21 1 for

0 for

v
v u v v k

v k

v k

ψ

       − = −  ≤ =       >

 (51) 

Now 

2 3
2 22

1 1
6

v k v
v dv

k k

             −  = − −                  
∫  using 

2

1
v

s
k

 = −    
, 

2

2v
ds dv

k
= −  and 

2

2

k
vdv ds= −  so that 

 ( )

3
2

2 1 1 for
0

6
1 for

v
k v k

v k

v k

ρ

       − −  ≤ ≤ =       >

 (52) 

To see how M-estimation using Tukey’s bisquare weight function might work in practice, consider the simple 

regression problem of fitting the straight line 0 1y xβ β= +  through a set of n data points ( ),i ix y  

1,2, ,i n= … .  The x-values are considered to be error free and the y-values are measurements subject to 

error.   

The M-estimator (a set of equations) will arise from optimizing the objective function ϕ , i.e., 

 ( )
1

optimum
n

i
i

vϕ ρ
=

= ⇒∑  

where ( )vρ  is given by (52) and k cS=  is a constant.  Now with ˆi i iv y y= −  and 0 1î iy xβ β= +  the 

objective function ϕ  is 
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               = = − +                    
   = − − − + −    
= + − − + − + + −

∑ ∑

∑

1

n

i=


∑

 

Now ϕ  is a function of the estimated parameters 0 1,β β , i.e., ( )0 1,ϕ ϕ β β=  and the function will be an 

optimum (either a minimum or a maximum value) when the partial derivatives 
0

ϕ

β

∂
∂

 and 
1

ϕ

β

∂
∂

 are both 

equated to zero where 
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   = + − − + − + + −    

= +

∑

∑

∑
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1
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i i i i
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x y x y
k
β β

=

 − − + −    ∑

 

and 
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∑

∑
 

The 2nd term in the summation in both partial derivatives is ( )
2

2

0 12

1
1 i ix y

k
β β

  − + −    
 and this is the 

weight iw  from (49) where 

 ( ) ( ) ( )
2

2 2
2 22

0 12

1
1 1 1i

i i i i i

v
w w v u x y

k k
β β

       = = − = − = − + −          
 (53) 

And the partial derivatives become 

 ( ) ( )0 1 0 1
1 10 1

  and  
n n

i i i i i i i
i i

w x y w x x y
ϕ ϕ

β β β β
β β= =

∂ ∂
= + − = + −

∂ ∂∑ ∑  

The weights iw  are positive numeric values less than or equal to 1, or they are zero and even though they 

are functions of 0 1,β β  they can be considered as constants for any particular values of 0 1,β β  and the second 

derivatives become 
2 2

2

2 2
1 10 1

0 and 0
n n

i i i
i i

w w x
ϕ ϕ

β β= =

∂ ∂
= > = >

∂ ∂
∑ ∑  and the optimum value of ϕ  will be a 

minimum when the partial derivatives are equated to zero.  This gives rise to two normal equations 
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∑
 

Or by re-arrangement and noting that 1 2 3
1

n

k k k n
k k

v v v v v v v
=

= = = + + + +∑ ∑ ∑ ⋯  are equivalent 
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i i i i i

i i i i i i i
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 (54) 

With solutions 
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i i i i i i i i i i i i i i i i i
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− −
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∑ ∑ ∑ ∑ ∑ ∑
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The normal equations (54) and solutions (55) are identical in form to (16) and (17) that are the least squares 

normal equations and solutions for the linear regression example in Figure 3.  But there is one significant 

difference: the weights iw  in M-estimation are functions of the ‘unknown’ parameter estimates 0 1,β β .  This 

means that the solution of equations (54) must be an iterative process where some approximate values of the 

parameters, say 
( ) ( )0 0

0 1,β β  are used to calculate a set of initial weights, say 
( )1
iw  that are computed from (53) 

and then are used in (54) to obtain a first solution for the parameters, say 
( ) ( )1 1

0 1,β β .  And these are used to 

calculate the next set of weights 
( )2
iw  and then a second solution 

( ) ( )2 2

0 1,β β .  This iterative process continues 

until the differences between 
( )j
iw  and 

( )1j

iw
+

 are negligible and this solution process is known as Iteratively 

Reweighted Least Squares (IRLS). 

Tukey’s bisquare weight function with Median Absolute Deviation (MAD) 

In the calculation of the weights iw  using Tukey’s bisquare weight function (49) the factor k cS=  is 

required where c is tuning constant (see below) and S is a measure of scale (or variability of the data) 

computed from the data.  For a sample of size n, measures of scale S of the residuals iv  could be the sample 

standard deviation vs  computed from the sample variance ( )22

1

1

1

n

v i
i

s v v
n =

= −
− ∑  where vs  is the positive 

square root of 2
vs  and 

1

1
n

i
i

v v
n =

= ∑  is the sample mean which is a measure of location (or centre) of the 

sample.  But the sample mean and variance (and hence the sample standard deviation) are known to suffer 

from the effects of outliers, since large residuals affect the mean v  and also the squared differences ( )2iv v−  

in the calculation of the variance.   

A more robust measure of the location of a sample is the median M and a more robust measure of the scale is 

the Median Absolute Deviation (MAD) that is defined as the median of the absolute deviations from the 

sample’s median M, i.e., 

 { } { }MAD median     where mediani iv M M v= − =  (56) 

where the braces { }  indicate a finite sample of n values. 

The median M of a sample { }ix  of n values ordered from smallest to largest so that 1 2 nx x x< < <…  is  

 { } ( )
1

1
12

if 2 1 is odd

if 2  is is even

k
i

k k

x n k
M x

x x n k

+

+

 = +=  + =
 (57) 

In either case there will be the same number values that are larger than or equal to the median, and smaller 

than or equal to the median M. 

For example, suppose iv  is a set of 1,2, ,i n= …  values and for 7n = , { }2 7 4 16 1 0 8iv = − .  

The set is ordered from smallest to largest as { }2 0 1 4 7 8 16
↑

−  and since n is odd, the median M is 

the middle value indicated with ↑ , ( )1 2 3k n= − =  and 1 4kM v += = .  There are 3 values less than M 

(the values to the left of the 4th value) and 3 values greater than M (the values to the right of the 4th value). 

Now suppose the set { }2 7 2 16 1 0 8 4 4 5iv = − −  has 10n =  values that is ordered from 

smallest to largest as { }5 2 0 1 2 4 4 7 8 16
↑ ↑

− − , and since n is even, the median M is the average 
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of the two middle values and 2 5k n= =  and ( )1
12

3k kM v v += + = .  There are 5 values less than the 

median (the first 5 values) and 5 values greater than the median (the last 5 values). 

It should be noted here that if X is a random variable that can take values n values 1 2, , , nx x x…  having a 

median M then the probability that any X is less than or equal to the median is exactly 1
2
 or 

( ) 1
2

Pr X M≤ =  and if X is a continuous random variable with probability density function ( )Xf x  and 

cumulative distribution function ( )XF x , so that ( ) ( )
x

X XF x f y dy

−∞

= ∫ , or ( ) ( )X X

d
F x f x

dx
=  then the 

median M is defined by the solution of the integral equation ( ) ( ) ( ) 1
Pr

2

M

X XX M F M f x dx

−∞

≤ = = =∫ . 

Appendix E shows how this result can be used to determine the value of a scale factor b that enables the 

MAD to be used as a consistent estimator of the standard deviation σ  of normally distributed data where 

 ( )ˆ MAD 1.4826 MADbσ = × ≈  (58) 

The measure of scale S above and in (50) is often taken to be ( )1.4826 MADS = . 

The Tuning Constant in M-estimation 

M-estimation is the outcome of optimizing the objective function ( )
1

n

i
i

vϕ ρ
=

=∑  where ( )ivρ  is a function of 

the residuals iv  and is related to the influence function ( )vψ  and weight function ( )w v  by 

( ) ( )d
v v

dv
ψ ρ=  and ( )

( )v
w v

v

ψ
= .  The residuals iv  are defined from the general relationship 

measurement + residual = best estimate (or ˆi i iy v y+ = ) giving ˆi i iv y y= −  and a scaled residual 

ˆi i i
i

v y y
u

k cS

−
= =  where k cS=  and S is a measure of scale computed from the residuals and c is a tuning 

constant.   

Now suppose that the residuals are each divided by S, computed from the sample, and these standardized 

residuals are i
i

v
v

S
=ɶ  and the scaled residuals i

i

v
u

c
=
ɶ

.  For example, using Tukey’s bisquare weight function 

 ( )

2
2

1 for

0 for

v
v c

w v c

v c

      −  ≤ =       >

ɶ
ɶ

ɶ

ɶ
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the ψ  and ρ  functions are 

 ( )

2
2

1 for

0 for

v
v v c

v c

v c

ψ

       −  ≤ =       >

ɶ
ɶ ɶ

ɶ

ɶ

 (60) 

 ( )

3
2

2 1 1 for

6
1 for

v
c v c

v c

v c

ρ

       − −  ≤ =       >

ɶ
ɶ

ɶ

ɶ

 (61) 
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The M-estimator ( )vψ ɶ , resulting from optimizing ( )
1

n

i
i

vϕ ρ
=

=∑ , should be an unbiased estimator and its 

efficiency can be defined as a ratio of the minimum possible variance of an unbiased estimator to the actual 

variance of the estimator and it can be proved that this ratio is less than or equal to unity, i.e., for an 

unbiased estimator θ̂ , 

 ( )
ˆminimum possible variance of ˆ 1

ˆactual variance of 
eff

θ
θ

θ
= ≤  

The actual variance of θ̂  can only be determined if the probability distribution of the random variable, from 

which the estimator is derived, is known.  Hence the efficiency of an estimator is described as ‘relative to’ or 

‘with respect to’ a particular distribution.  The standard normal distribution is often assumed to be the 

underlying probability distribution. 

The efficiency of an estimator is often expressed as a percentage, e.g. if ( )ˆ 0.95eff θ =  then θ̂  has an 

efficiency of 95% with respect to the standard normal distribution. 

An equation for 95% efficiency of an M-estimator, assuming the residuals are from a standard normal 

distribution, is given by Huber (1981) as 

 

( ) ( )

( ) ( )

2

2

0.95

c

X

c

c

X

c

x f x dx

eff

x f x dx

ψ

ψ

−

−

 
 ′ 
 
 = ≈

  

∫

∫

 (62) 

where ( )0,1x N∼  are the random variables, ( )Xf x  is the pdf of the standard normal distribution, ( )xψ  is 

the influence function for any M-estimator and ( ) ( )d
x x

dx
ψ ψ′ =  

Equation (62) involving the tuning constant c as integration limits is solved numerically by Banas & Ligas 

(2014) to obtain 4.685c =  for the influence function for Tukey’s biweight (see (59) to (61) above with x 

replacing vɶ ).  For example, with 

 ( )

2
2

1 for

0 for

x
x x c

x c

x c

ψ

       −  ≤ =       >

 

then 

 ( )

2 2

1 1 5 for

0 for

x x
x c

x c c

x c

ψ

               −  −  ≤          ′  =          >
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And with ( )
21

2
1

2

x

Xf x e
π

−=  equation (62) can be (rather crudely) evaluated using the following function 

eff written in GNU Octave5  

function eff 
for c = 4.68:0.005:4.70   
  sumx = 0; 

  sumy = 0; 

  dx = 0.0005; 
  root = sqrt(2*pi); 

 
  for x = -c:dx:c 

    fx = 1/root*exp(-x*x/2); 
    u  = x/c; 

    u2 = u*u; 

    px = x*(1-u2)^2; 
    pdashx = (1-u2)*(1-5*u2); 
    sumx = sumx + (pdashx*fx*dx); 

    sumy = sumy + (px^2*fx*dx); 

  end   
  eff = sumx^2/sumy; 

  fprintf(' c   = %5.3f',c); 
  fprintf('\n eff = %8.6f\n',eff); 

end 
endfunction 

 

The results, shown in the Octave Command Window, are 

>> eff 
 c   = 4.680 

 eff = 0.949793 

 c   = 4.685 
 eff = 0.949997 

 c   = 4.690 
 eff = 0.950201 
 c   = 4.695 

 eff = 0.950403 

 c   = 4.700 

 eff = 0.950605 
>> 

 

The computed efficiency of 0.949997 for 4.685c =  confirms the result of Banas & Ligas (2014) and others, 

e.g. Hogg 1979 and Yohai 1987.   

Another weighting function known as tricube is often used in M-estimation and also in Lowess where it is 

used to determine the local weights for the q nearest neighbours.  It has the general form 

 ( ) ( )
3

3
1 for 1

0 for 1

x x
w x

x

 − ≤=  >

 (63) 

Now suppose that x is replaced by the scaled standardized residuals 
v

u
c

=
ɶ

 giving the tricube weight 

function 

 

5 GNU Octave is a high-level language, primarily intended for numerical computations.  It provides a convenient 

command line interface for solving linear and nonlinear problems numerically, and for performing other numerical 

experiments using a language that is mostly compatible with Matlab.  GNU Octave is freely redistributable software from 

the Free Software Foundation. 
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 ( )

3
3

1 for

0 for 1

v
v c

w v c

v

       − ≤  =       >

ɶ
ɶ

ɶ

ɶ

 (64) 

Where i
i

v
v

S
=ɶ  are standardised residuals and c is a tuning constant.  The tricube -ψ  and -ρ functions (the 

influence and objective functions) are 

 ( )

3
3

1 for

0 for

v
v v c

v c

v c

ψ

        − ≤  =        >
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ρ
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ɶ ɶ ɶ ɶ
ɶ

ɶ
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 (66) 

For the purposes of evaluating c using (62) ( )xψ  [obtained from (64) with x replacing vɶ ] and its derivative 

( )xψ ′  are 

 ( )

3
3

1 for

0 for

x
x x c

x c

x c

ψ

        − ≤  =        >

 (67) 
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3 3 3

1 3 4 7 1 10 for

0 for

x x x
x c

x c c c

x c

ψ

                       − − − ≤          ′   =               >

 (68) 

And using the function eff shown above (suitably modified for the tricube function) a value of 4.416c =  

corresponds with the computed efficiency of 0.950019.  This confirms the result of Banas & Ligas (2014) who 

find 4.417c = . 

 

Figure 5.  Tukey’s bisquare -ρ , -ψ  and -w functions 
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Figure 6.  Tricube -ρ , -ψ  and -w functions 

 

Example.  M-estimation using Tukey’s bisquare weighting function 

Consider the simple regression problem of fitting the straight line 0 1y xβ β= +  through a set of 24n =  

data points ( ),i ix y  1,2, ,i m= … .  The data, called here the Belgian Telephone Dataset, is taken from 

the Belgian Statistical Survey (published by the Ministry of Economy) and consists of the number of 

international telephone calls made from Belgium (in millions) over a 24-year period from 1950 to 1973 (both 

inclusive).  The dataset contains spurious results between 1964 and 1969 as a different recording system was 

used which recorded the total number of minutes of calls made rather than simply the numbers of calls.  The 

years 1963 and 1970 are partially affected as well since the transition did not occur on the New Years’ day 

exactly.  This dataset was discussed in Rousseeuw and Leroy (1987, p. 26, Table 2) and has been used in 

other publications on M-estimation. 

 

Year 

( )ix  

Number of 

calls ( )iy  

Year 

( )ix  

Number of 

calls ( )iy  

Year 

( )ix  

Number of 

calls ( )iy  

1950 0.44 1958 1.06 1966 14.20 

1951 0.46 1959 1.20 1967 15.90 

1952 0.47 1960 1.35 1968 18.20 

1953 0.59 1961 1.49 1969 21.20 

1954 0.66 1962 1.61 1970 4.30 

1955 0.73 1963 2.12 1971 2.40 

1956 0.81 1964 11.90 1972 2.70 

1957 0.88 1965 12.40 1973 2.90 

 

Table 2.  Belgium Telephone Dataset 1950-73.  Number of international calls (millions) 
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Figure 7.  Regression lines 0 1y xβ β= +  for the Belgium Telephone Dataset.   

 Dashed line: Least Squares (unit weights); solid line: M-estimate (Tukey’s 

bisquare weighting function and Iteratively Reweighted Least Squares). 

Using the data and assuming weights of unity for each yearly value, the parameters 0 1,β β  of a regression line 

0 1y xβ β= +  are computed using Least Squares and shown as the dashed line in Figure 7 as 

0ˆ .80000 0.504230 9y x+= −  where Year 1950x = − .  These are used as the initial values in an Iterative 

Reweighted Least Squares solution for 0 1,β β  where the weighting function is Tukey’s bisquare weight 

function where the scale factor k cS=  and the tuning constant 4.865c = , the scale parameter 

MADS b= ×  with 1.4826b = .  The MAD and weights are calculated from the residuals for each iteration.  

The iterative process continues until the weights of successive iterations differ by an acceptably small 

tolerance.  In this example the tolerance was 1e 6−  and convergence was achieved in 10 iterations with 

4ˆ 0.25926 0.110004 xy += .  The weights after convergence are shown in Table 3 and it can be noted that 

the y-values for years 1964 to 1970 are zero and this corresponds with the information about the spurious 

nature of the y-values for those years. 

Year weight Year weight Year weight Year weight 

1950 0.908147 1956 0.965900 1962 0.997291 1968 0 

1951 0.976435 1957 0.936845 1963 0.537191 1969 0 

1952 0.999752 1958 0.981974 1964 0 1970 0 

1953 0.999998 1959 0.993012 1965 0 1971 0.919113 

1954 0.995561 1960 0.999751 1966 0 1972 0.998774 

1955 0.981980 1961 0.998768 1967 0 1973 0.965063 

Table 3.  Weights for the Belgium Telephone Dataset after 10 iterations 

Yohai (1987, Table 2, Figure 1, p. 652) analyses the same data using the same weighting function (Tukey’s 

bisquare weight function) but with a modified version of the iteratively reweighted least squares process used 

here.  His results, corrected to accord with the Year scale used here, are ˆ 0.26 0.11y x= +  

The results for this example were obtained from a function M_estimate written in GNU Octave and shown in 

Appendix F. 
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A More Detailed Explanation of Lowess 

To give a more detailed explanation of Lowess, a data set from the NIST/SEMATECH6 e-Handbook of 

Statistical Methods will be used.  The data is shown in Table 4 and Figure 8 is a plot of the data showing a 

trendline that is a non-robust Lowess smoothed curve. 

 

          X                 Y 

1 0.5578196 18.63654 

2 2.0217271 103.49646 

3 2.5773252 150.35391 

4 3.4140288 190.51031 

5 4.3014084 208.70115 

6 4.7448394 213.71135 

7 5.1073781 228.49353 

          X                 Y 

8 6.5411662 233.55387 

9 6.7216176 234.55054 

10 7.2600583 223.89225 

11 8.1335874 227.68339 

12 9.1224379 223.91982 

13 11.9296663 168.01999 

14 12.3797674 164.95750 

          X                 Y 

15 13.2728619 152.61107 

16 14.2767453 160.78742 

17 15.3731026 168.55567 

18 15.6476637 152.42658 

19 18.5605355 221.70702 

20 18.5866354 222.69040 

21 18.7572812 243.18828 

 

Table 4.  NIST data for Lowess smoothing 

https://www.itl.nist.gov/div898/handbook/pmd/section1/dep/dep144.htm 

 
Figure 8.  Plot of NIST data for Lowess smoothing.  The trendline is a non-robust Lowess smoothed curve. 

In the NIST data example, there are 21n =  ( ),x y  data pairs ordered from smallest to largest x-value and it 

is assumed that the x-values are error free and the y-values are measurements subject to error.  In Figure 8 

the trendline is a non-robust Lowess smoothed curve and this means that only local weights derived from a 

 

6 This handbook is a joint production of The National Institute of Standards and Technology (NIST), an agency of the 

US Department of Commerce, and SEMATECH (from Semiconductor Manufacturing Technology) a not-for-profit 

consortium of major US semiconductor manufacturers founded in 1987 and now merged with State University of New 

York Polytechnic Institute (SUNY Poly) 
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tricube weight function are used and there is no robust weighting scheme employed as in M-estimation.  This 

non-robust Lowess smoothing is also known as Loess (locally weighted regression).  We will describe this 

process first and then show how the robust weighting schemes of M-estimation are used. 

Determining the group of nearest neighbours 

The first part of the computational process is to determine the number of points that constitute the group of 

nearest neighbours q of the smoothing point ( ),s sx y  remembering that the smoothing point is a nearest 

neighbour of itself and ( )floorq f n= ×  where 0 1f< ≤  defines the proportion of points used in the 

smoothing, or the amount of smoothing and n is the number of points in the data set.  In the NIST example 

0.35f =  and ( )floor 0.35 21 7q = × = .  A value f in the range of 0.2 to 0.8 usually gives an acceptably 

smooth trendline. 

Now, having determined q, the nearest neighbours of the smoothing point need to be identified in the data 

set.  The following algorithm – expressed in GNU Octave code – defines the initial location of a window 

containing q points and then advances this window through the data set (from left to right) as required and 

prints the smoothing point index and the index numbers of the left and right boundaries of the window. 

Nleft  = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning 

Nright = q; Nright = q is index of the right edge of window at beginning 

i      = 1 i is the index of the first smoothing point 
do  

  while (Nright < N) N is the number of points in the data set 

    d1 = X(i) – X(Nleft); d1 is distance to left edge of window 

    d2 = X(Nright+1) – X(i); d2 is distance to right edge of window 
    if (d1 <= d2) 

      break don't move the window; exit while loop 
    endif 

    Nleft  = Nleft+1; move the window one place to the right and repeat 
    Nright = Nright+1; 
  endwhile 

  last = i set index of last point 
  if (i == 1) 
    fprintf('\n                 nearest neighbour window'); 
    fprintf('\n smoothing point left edge     right edge'); 

  else 

    fprintf('\n      %2d          %2d            %2d',i,Nleft,Nright); 
  endif 

  i = max(last+1,i-1); set index of new smoothing point 
until (last >= N) 

 

The printed output of the Octave code above is 

 
                 nearest neighbour window 
 smooth point    left edge     right edge 

      1             1              7 

      2             1              7 
      3             1              7 

      4             1              7 

      5             2              8 
      6             3              9 
      7             4             10 

      8             5             11 

      9             6             12 
     10             6             12

                 nearest neighbour window 
 smooth point    left edge     right edge 

     11             6             12 

     12             8             14 
     13            12             18 

     14            12             18 

     15            12             18 
     16            13             19 
     17            14             20 

     18            15             21 

     19            15             21 
     20            15             21 
     21            15             21 
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We can see from the printed output that the smoothing point index increases uniformly from 1 to 21 but the 

indices for the left and right edges of the window do not.  The key to their movement is the x-distances d1 

and d2 where d1 is the distance from the smoothing point to the left edge of the window and d2 is the 

distance from the smoothing point to the next data point past the right edge of the window.  When 1 2d d>  

the window is advanced otherwise it remains in the same place. 

1 2 3 4 5 6 7 89 10 11 12 13 14 15 16
17

18 19
20

21

window for (12)

window for (13)

d1 d2

 

Figure 9.  Schematic diagram of the x-location of the 21 NIST data.  The windows for smoothing points 12 

and 13 are shown with distances d1 and d2 related to smoothing point 12. 

Assigning the Local Weights 

With the smoothing point index set and the left and right window boundary indices determined the x-

distances from the smoothing point to each of the q nearest neighbours are calculated and local weights 

determined from the tricube weight function 

 ( )

3
3

1 for

0 for

j
j

j

j

r
r h

w r h

r h

       − <   =        ≥

 (69) 

where 0 1jw≤ ≤  for 1,2, ,j q= …  is a weight, jr  is the absolute value of the x-distance from the smoothing 

point to the jth nearest neighbour and ( )max jh r= .  The tricube weight function is a symmetric bell-shaped 

curve (see Figure 6) with 0 1jw< <  for jr h<  and 0jw =  for jr h≥  with a maximum 1jw =  at the 

smoothing point where 0jr = . 

The following algorithm – expressed in GNU Octave code – defines the initial location of a window 

containing q points and then advances this window through the data set (from left to right) as required and 

determines the local weights using the tricube weight function (69) and prints results for the q nearest 

neighbours of the smoothing point.  (The code follows after the data has been read from a text file and the 

number of data pairs N determined; see for example, the Octave program M_estimate in Appendix F.) 

Nleft  = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning 

Nright = q; Nright = q is index of the right edge of window at beginning 

i      = 1 i is the index of the first smoothing point 
do  

  while (Nright < N) N is the number of points in the data set 

    d1 = X(i) – X(Nleft); d1 is distance to left edge of window 

    d2 = X(Nright+1) – X(i); d2 is distance to right edge of window 

      break don't move the window; exit while loop 
    endif 

    Nleft  = Nleft+1; move the window one place to the right and repeat 
    Nright = Nright+1; 
  endwhile 

  Xs = X(i);  Xs = X(i) is the smoothing point 

  h  = max(Xs-X(Nleft), X(Nright)-Xs); maximum distance from smoothing point 
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  w  = zeros(N,1);  zero the vector of weights 
  fprintf('\n\n    X(%2d)         X            Y          r          r/h        weight',i); 

  for j = Nleft:1:Nright 

    r    = abs(X(j)-Xs);  distance from smoothing point to a nearest neighbour 

    w(j) = (1-(r/h)^3)^3;  Tricube weight function 
    if (r == 0) 

      fprintf('\n%12.7f %12.7f  %9.7f  %9.7f  %9.7f  %9.7f',Xs,X(j),Y(j),r,r/h,w(j)); 
    else 
      fprintf('\n             %12.7f  %9.7f  %9.7f  %9.7f  %9.7f',X(j),Y(j),r,r/h,w(j)); 

    endif 

  endfor 

  last = i; set index of last point 

  i = max(last+1,i-1); set index of new smoothing point 
until (last >= N) 

fprintf('\n\n'); 
endfunction 
 

 

The printed output for smoothing points 1, 2, 3, 12, 13, 20 and 21 of the NIST data are shown below 

 

    X( 1)         X           Y           r          r/h        weight 
   0.5578196    0.5578196  18.6365400   0.0000000  0.0000000  1.0000000 

                2.0217271  103.4964600  1.4639075  0.3217691  0.9033491 
                2.5773252  150.3539100  2.0195056  0.4438905  0.7598897 

                3.4140288  190.5103100  2.8562092  0.6277992  0.4262171 

                4.3014084  208.7011500  3.7435888  0.8228466  0.0868617 
                4.7448394  213.7113500  4.1870198  0.9203134  0.0107231 
                5.1073781  228.4935300  4.5495585  1.0000000  0.0000000 
 

    X( 2)         X           Y           r          r/h        weight 

                0.5578196  18.6365400   1.4639075  0.4744242  0.7126422 

   2.0217271    2.0217271  103.4964600  0.0000000  0.0000000  1.0000000 
                2.5773252  150.3539100  0.5555981  0.1800586  0.9825889 

                3.4140288  190.5103100  1.3923017  0.4512181  0.7489423 
                4.3014084  208.7011500  2.2796813  0.7388008  0.2125014 

                4.7448394  213.7113500  2.7231123  0.8825082  0.0305716 
                5.1073781  228.4935300  3.0856510  1.0000000  0.0000000 
 

    X( 3)         X           Y           r          r/h        weight 

                0.5578196  18.6365400   2.0195056  0.7982069  0.1186857 
                2.0217271  103.4964600  0.5555981  0.2195994  0.9685654 

   2.5773252    2.5773252  150.3539100  0.0000000  0.0000000  1.0000000 
                3.4140288  190.5103100  0.8367036  0.3307060  0.8953727 

                4.3014084  208.7011500  1.7240832  0.6814416  0.3194020 

                4.7448394  213.7113500  2.1675142  0.8567071  0.0511567 

                5.1073781  228.4935300  2.5300529  1.0000000  0.0000000 
    : 
    : 

    X(12)         X            Y          r          r/h        weight 

                6.5411662  233.5538700  2.5812717  0.7924503  0.1267777 

                6.7216176  234.5505400  2.4008203  0.7370517  0.2155685 
                7.2600583  223.8922500  1.8623796  0.5717504  0.5375574 

                8.1335874  227.6833900  0.9888505  0.3035771  0.9183942 
   9.1224379    9.1224379  223.9198200  0.0000000  0.0000000  1.0000000 

               11.9296663  168.0199900  2.8072284  0.8618190  0.0466169 
               12.3797674  164.9575000  3.2573295  1.0000000  0.0000000 
 

    X(13)         X            Y          r          r/h        weight 

                9.1224379  223.9198200  2.8072284  0.7550378  0.1847708 

  11.9296663   11.9296663  168.0199900  0.0000000  0.0000000  1.0000000 
               12.3797674  164.9575000  0.4501011  0.1210601  0.9946868 
               13.2728619  152.6110700  1.3431956  0.3612686  0.8651119 

               14.2767453  160.7874200  2.3470790  0.6312751  0.4192341 

               15.3731026  168.5556700  3.4434363  0.9261535  0.0086887 

               15.6476637  152.4265800  3.7179974  1.0000000  0.0000000 
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    : 
    : 

    X(20)         X            Y          r          r/h        weight 

               13.2728619  152.6110700  5.3137735  1.0000000  0.0000000 
               14.2767453  160.7874200  4.3098901  0.8110790  0.1014766 

               15.3731026  168.5556700  3.2135328  0.6047553  0.4724078 

               15.6476637  152.4265800  2.9389717  0.5530856  0.5734607 
               18.5605355  221.7070200  0.0260999  0.0049117  0.9999996 
  18.5866354   18.5866354  222.6904000  0.0000000  0.0000000  1.0000000 

               18.7572812  243.1882800  0.1706458  0.0321139  0.9999006 

 
    X(21)         X            Y          r          r/h        weight 
               13.2728619  152.6110700  5.4844193  1.0000000  0.0000000 

               14.2767453  160.7874200  4.4805359  0.8169572  0.0940394 

               15.3731026  168.5556700  3.3841786  0.6170532  0.4477921 
               15.6476637  152.4265800  3.1096175  0.5669912  0.5467900 

               18.5605355  221.7070200  0.1967457  0.0358736  0.9998615 

               18.5866354  222.6904000  0.1706458  0.0311147  0.9999096 
  18.7572812   18.7572812  243.1882800  0.0000000  0.0000000  1.0000000 
 

Locally Weighted Linear Regression - Cleveland’s Method 

After the local weights have been determined for each of the q nearest neighbours of the smoothing point sx  

a least squares linear regression is performed to determine 0 1ŝ sy xβ β= + .  The usual least squares approach 

is to form the normal equations (16) and then solve these equation to give 0 1,β β  from (17).  Another method 

– and the one used by Cleveland (1981) in his FORTRAN routine LOWESS (see Appendix G) – is explained 

below. 

For the 1,2, 3, ,j q= …  nearest neighbours, normal equations of the form (16) can be written in terms of 

normalized weights jw∗  and reduced coordinates jx  defined as 
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 is a weighted mean and the normal equations (16) can be written as 
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We now show that (i) 1jw∗ =∑  and (ii) 0j jw x∗ =∑ . 

(i) Since 
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 and 1jw∗ =∑  then j jg w x∗= ∑ .  Also, ( )j j j j j j jw x w x g w x w g∗ ∗ ∗ ∗= − = − . 

 So 0j j j j j j j jw x w x w g w x g w g g∗ ∗ ∗ ∗ ∗= − = − = − =∑ ∑ ∑ ∑  

Using these results in (72) gives the solutions 
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For the smoothing point ( ),s sx y  the estimate 0 1ŝ sy xβ β= +  and using (73) we may write 
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2

s

j j

x
b

w x∗
=
∑
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With the substitution ( )1j j jW w bx∗= +  in (75) the estimate at the smoothing point ( ),s sx y  is given by 

 1 1 2 2
1

ˆ
q

s q q j j
j

y W y W y W y W y
=

= + + + =∑⋯  (76) 

The following GNU Octave code shows how this method of computing the estimate ŝy  can be employed.  

(The code follows after the data has been read from a text file and the number of data pairs N determined; 

see for example, the Octave program M_estimate in Appendix F.) 

f = 0.35; set the value of f 

q = floor(f*N); q is the number of nearest neighbours 

Nleft  = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning 

Nright = q; Nright = q is index of the right edge of window at beginning 

i      = 1 i is the index of the first smoothing point 

Yhat   = zeros(N,1) zero the vector of y-estimates 

do do the smoothing 

  while (Nright < N) N is the number of points in the data set 

    d1 = X(i) – X(Nleft); d1 is distance to left edge of window 

    d2 = X(Nright+1) – X(i); d2 is distance to right edge of window 

      break don't move the window; exit while loop 
    endif 

    Nleft  = Nleft+1; move the window one place to the right and repeat 
    Nright = Nright+1; 

  endwhile 

  Xs = X(i);  Xs = X(i) is the smoothing point 

  h  = max(Xs-X(Nleft), X(Nright)-Xs); maximum distance from smoothing point 

  w  = zeros(N,1);  zero the vector of weights 

  sw = 0; set sum of weights to zero 
  for j = Nleft:1:Nright 

    r    = abs(X(j)-Xs);  distance from smoothing point to a nearest neighbour 

    w(j) = (1-(r/h)^3)^3;  Tricube weight function 
    sw   = sw + w(j) 

  endfor 

  g = 0; set weighted mean g to zero 
  for j = Nleft:1:Nright  
    w(j) = w(j)/sw;  normalize weights 

    g    = g + w(j)*X(j); accumulate weighted mean 
  endfor 
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  Xbar = Xs-g reduced x-value at smoothing point 

  c    = 0; factor c = sum of weighted squared reduced coordinates 
  for j = Nleft:1:Nright  
    c = c + w(j)*(X(j)-g)^2; accumulate factor c 
  endfor 

  b = Xbar/c; factor b 
  for j = Nleft:1:Nright  
    w(j) = w(j)*(1 + b*(X(j)-g)); calculate modified weights 
  endfor 

  Ys = 0; set the y-estimate at the smoothing point to zero 
  for j = Nleft:1:Nright  
    Ys = Ys + w(j)*Y(j); accumulate the y-estimate at the smoothing point 
  endfor 
  Yhat(i) = Ys; 

  last = i; set index of last point 

  i = max(last+1,i-1); set index of new smoothing point 
until (last >= N) 
 

fprintf('\n\n non-Robust LOWESS smoothing'); 

fprintf('\n N = %2d data pairs\n f = %4.2f and f*N = %8.4f',N,f,f*N); 

fprintf('\n q = %3d',q); 
fprintf('\n\n point    X             Y          Y-estimate      residual'); 

for i = 1:1:N 

  fprintf('\n %2d  %12.7f  %12.7f  %12.7f  %12.7f',i,X(i),Y(i),Yhat(i),Yhat(i)-Y(i)); 
endfor 

fprintf('\n\n'); 
endfunction 

 
 

The printed output for the NIST data is shown below 

 
non-Robust LOWESS smoothing 

 N = 21 data pairs 
 f = 0.35 and f*N =   7.3500 

 q =   7 
 

 point    X             Y          Y-estimate      residual 

  1     0.5578196    18.6365400    20.5930234     1.9564834 
  2     2.0217271   103.4964600   107.1603072     3.6638472 

  3     2.5773252   150.3539100   139.7673812   -10.5865288 

  4     3.4140288   190.5103100   174.2630435   -16.2472665 

  5     4.3014084   208.7011500   207.2333825    -1.4677675 
  6     4.7448394   213.7113500   216.6615860     2.9502360 

  7     5.1073781   228.4935300   220.5444798    -7.9490502 
  8     6.5411662   233.5538700   229.8606930    -3.6931770 

  9     6.7216176   234.5505400   229.8347130    -4.7158270 
 10     7.2600583   223.8922500   229.4301158     5.5378658 

 11     8.1335874   227.6833900   226.6044590    -1.0789310 

 12     9.1224379   223.9198200   220.3904099    -3.5294101 
 13    11.9296663   168.0199900   172.3479994     4.3280094 
 14    12.3797674   164.9575000   163.8416613    -1.1158387 

 15    13.2728619   152.6110700   161.8489707     9.2379007 

 16    14.2767453   160.7874200   160.3350837    -0.4523363 
 17    15.3731026   168.5556700   160.1919893    -8.3636807 
 18    15.6476637   152.4265800   161.0555925     8.6290125 

 19    18.5605355   221.7070200   227.3399559     5.6329359 

 20    18.5866354   222.6904000   227.8985350     5.2081350 
 21    18.7572812   243.1882800   231.5585563   -11.6297237 
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Robust Weighting using Tukey’s bisquare weighting function 

Lowess uses robust weighting as in M-estimation and the GNU Octave code below uses Tukey’s bisquare 

weighting function (49) written as 
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 (77) 

where i ir v=  and ˆi i iv y y= −  is the residual of the ith point, and 6 MADcMAD = ×  is a constant where 

MAD is the Median Absolute Deviation [see (56) and (57)].   

[We have shown in Appendix E that if the residuals are considered as normally distributed random variables 

then ˆ 1.4826 MADσ = ×  is a measure of the scale S of the distribution.  Also, in a previous section, we have 

shown that the constant cMAD cS=  where c is a tuning constant and that 4.685c =  is associated with 

95% efficiency of the estimation process.  So ( )4.685 1.4826 MAD 6.9 MADcMAD = × ≈ ×  would be an 

appropriate value.  But we have used 6 MAD×  in accordance with Cleveland’s FORTRAN routine 

LOWESS – see Appendix G.] 

The following GNU Octave code shows how the robust weighting technique of M-estimation is used in 

computing the estimate ŝy  but the routine does not continue until the robustness weights converge to 

acceptable values, as in M-estimation, but instead is terminated when the user selected number of iterations 

have been performed.  (The code follows after the data has been read from a text file and the number of data 

pairs N determined; see for example, the Octave program M_estimate in Appendix F.) 

Yhat   = zeros(N,1); set the vector of y-estimates to zeros 

V      = zeros(N,1); set the vector of residuals to zeros 

rw     = zeros(N,1); set the vector of robustness weights to ones 

Nsteps = 5; set the number of iterations for robust smoothing 
if (Nsteps > 0) 

  rwFlag = 1; set robust weighting flag to 1 (Yes) 
else 

  rwFlag = 0; set robust weighting flag to 0 (No) 
endif 

f = 0.35; set the value of f 

q = floor(f*N); q is the number of nearest neighbours 
for iter = 1:1:Nsteps+1  
  Nleft  = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning 

  Nright = q; Nright = q is index of the right edge of window at beginning 

  i      = 1 i is the index of the first smoothing point 

  Yhat   = zeros(N,1) zero the vector of y-estimates 

  do do the smoothing 

    while (Nright < N) N is the number of points in the data set 

      d1 = X(i) – X(Nleft); d1 is distance to left edge of window 

      d2 = X(Nright+1) – X(i); d2 is distance to right edge of window 

        break don't move the window; exit while loop 
      endif 

      Nleft  = Nleft+1; move the window one place to the right and repeat 
      Nright = Nright+1; 
    endwhile 

    Xs = X(i);  Xs = X(i) is the smoothing point 

    h  = max(Xs-X(Nleft), X(Nright)-Xs); maximum distance from smoothing point 

    w  = zeros(N,1);  zero the vector of weights 

    sw = 0; set sum of weights to zero 
    for j = Nleft:1:Nright 

      r    = abs(X(j)-Xs);  distance from smoothing point to a nearest neighbour 
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      w(j) = (1-(r/h)^3)^3;  Tricube weight function 
      sw   = sw + w(j) 

    endfor 

    g = 0; set weighted mean g to zero 
    for j = Nleft:1:Nright  
      w(j) = w(j)/sw;  normalize weights 

      g    = g + w(j)*X(j); accumulate weighted mean 
    endfor 

    Xbar = Xs-g reduced x-value at smoothing point 

    c    = 0; factor c = sum of weighted squared reduced coordinates 
    for j = Nleft:1:Nright  
      c = c + w(j)*(X(j)-g)^2; accumulate factor c 
    endfor 

    b = Xbar/c; factor b 
    for j = Nleft:1:Nright  
      w(j) = w(j)*(1 + b*(X(j)-g)); calculate modified weights 
    endfor 

    Ys = 0; set the y-estimate at the smoothing point to zero 
    for j = Nleft:1:Nright 
      Ys = Ys + w(j)*Y(j); accumulate the y-estimate at the smoothing point 
    endfor 
    Yhat(i) = Ys; 

    last = i; set index of last point 

    i = max(last+1,i-1); set index of new smoothing point 
  until (last >= N) 

  for i = 1:1:N calculate residuals 
    V(i) = Yhat(i)-Y(i); 

  endfor 

  if (iter > Nsteps) 

    break break out of robust weighting iterations 
  endif 

  M    = median(V); median of residuals 

  MAD  = median(abs(V-M)); Median Absolute Deviation 

  cMad = 6*MAD; scaled MAD 

  rw   = zeros(N,1); set robustness weights to zeros 

  for i = 1:1:N calculate robustness weights using Tukey’s bisquare weight function 
    r = abs(V(i)); 

    if (r < cMAD) 
      rw(i) = (1-(r/cMAD)^2)^2; 

    endif 

  endfor 

endfor 
fprintf('\n\n Robust LOWESS smoothing (Nsteps = %d)',Nsteps); 

fprintf('\n N = %2d data pairs\n f = %4.2f and f*N = %8.4f',N,f,f*N); 

fprintf('\n q = %3d',q); 
fprintf('\n\n point    X             Y          Y-estimate      residual  robustness 

weight'); 
for i = 1:1:N 

  fprintf('\n %2d  %12.7f  %12.7f  %12.7f  %12.7f  %12.7f',i,X(i),Y(i),Yhat(i),V(i),rw(i)); 
endfor 

fprintf('\n\n'); 

endfunction 
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The printed output for the NIST data is shown below.  Five iterations (Nsteps = 5) have been performed. 

 
Robust LOWESS smoothing (Nsteps = 5) 
 N = 21 data pairs 

 f = 0.35 and f*N =   7.3500 

 q =   7 

 
 point    X             Y          Y-estimate      residual  robustness weight 
  1     0.5578196    18.6365400    20.6551527     2.0186127     0.9895680 

  2     2.0217271   103.4964600   103.9751637     0.4787037     0.9963422 
  3     2.5773252   150.3539100   134.7299161   -15.6239939     0.5121817 

  4     3.4140288   190.5103100   169.0957071   -21.4146029     0.1922493 

  5     4.3014084   208.7011500   206.1487447    -2.5524053     0.9849495 
  6     4.7448394   213.7113500   216.5930028     2.8816528     0.9780853 
  7     5.1073781   228.4935300   220.4298309    -8.0636991     0.8338874 

  8     6.5411662   233.5538700   229.9081014    -3.6457686     0.9646841 

  9     6.7216176   234.5505400   229.8972567    -4.6532833     0.9427907 

 10     7.2600583   223.8922500   229.5064520     5.6142020     0.9177364 
 11     8.1335874   227.6833900   226.6535746    -1.0298154     0.9971393 
 12     9.1224379   223.9198200   220.4756693    -3.4441507     0.9683663 

 13    11.9296663   168.0199900   172.5318044     4.5118144     0.9467907 

 14    12.3797674   164.9575000   164.1343938    -0.8231062     0.9980534 
 15    13.2728619   152.6110700   162.1911642     9.5800942     0.7713345 

 16    14.2767453   160.7874200   160.5850453    -0.2023747     0.9998549 
 17    15.3731026   168.5556700   160.3520721    -8.2035979     0.8271475 
 18    15.6476637   152.4265800   161.3406845     8.9141045     0.8008079 

 19    18.5605355   221.7070200   225.6130682     3.9060482     0.9545332 

 20    18.5866354   222.6904000   226.1507976     3.4603976     0.9636372 

 21    18.7572812   243.1882800   229.6746851   -13.5135949     0.5857118 
 
 

The results after 10 iterations are 

 Robust LOWESS smoothing (Nsteps = 10) 

 N = 21 data pairs 

 f = 0.35 and f*N =   7.3500 
 q =   7 
 

 point    X             Y          Y-estimate      residual  robustness weight 

  1     0.5578196    18.6365400    20.8918425     2.2553025     0.9804132 
  2     2.0217271   103.4964600    97.8762540    -5.6202060     0.8885292 

  3     2.5773252   150.3539100   127.1199816   -23.2339284     0.0000000 
  4     3.4140288   190.5103100   163.7367673   -26.7735427     0.0000000 

  5     4.3014084   208.7011500   207.1509806    -1.5501694     0.9909172 
  6     4.7448394   213.7113500   216.5717074     2.8603574     0.9698759 

  7     5.1073781   228.4935300   220.3210533    -8.1724767     0.7612847 

  8     6.5411662   233.5538700   229.9355900    -3.6182800     0.9511953 

  9     6.7216176   234.5505400   229.9325762    -4.6179638     0.9211339 
 10     7.2600583   223.8922500   229.5451478     5.6528978     0.8822693 

 11     8.1335874   227.6833900   226.6777472    -1.0056428     0.9962241 

 12     9.1224379   223.9198200   220.5304649    -3.3893551     0.9571822 
 13    11.9296663   168.0199900   172.6406648     4.6206748     0.9200485 

 14    12.3797674   164.9575000   164.2856560    -0.6718440     0.9984832 
 15    13.2728619   152.6110700   162.3987606     9.7876906     0.6681681 

 16    14.2767453   160.7874200   160.8112132     0.0237932     0.9999964 
 17    15.3731026   168.5556700   160.6282215    -7.9274485     0.7748588 

 18    15.6476637   152.4265800   161.7823610     9.3557810     0.6968977 

 19    18.5605355   221.7070200   223.7810807     2.0740607     0.9840663 

 20    18.5866354   222.6904000   224.2973629     1.6069629     0.9904772 
 21    18.7572812   243.1882800   227.6806356   -15.5076444     0.2952219 

 

Points 3, 4 and 21 could be considered as outliers because of their zero or low weight and relatively large 

residuals and perhaps the measurements at these points scrutinised. 
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The GNU Octave code used above to show how Lowess smoothing can be done makes very little or no use of 

Octave’s matrix capabilities.  Instead, we have chosen to follow closely the style of Cleveland’s FORTRAN 

routines LOWESS and LOWEST that he made available from the Computing Information Library at Bell 

Laboratories (Cleveland 1981).  Copies of Cleveland’s programs can be discovered from Internet searches and 

we have shown the result of such a search in Appendix G that contains Ratfor7 versions of LOWESS and 

LOWEST as well as the FORTRAN code.  Cleveland’s routines are more sophisticated than our Octave code 

and can accommodate multiple y-values (for a single x-value), and very large data sets that can be processed 

efficiently by grouping data in blocks.  Also, various implementations of Lowess can be found on the 

Internet.  Some that use robust estimation and others that do not; in which case those implementations 

would be classified as Loess routines employing local weighting schemes only. 

Conclusion 

Lowess is a useful robust weighted regression smoothing algorithm for ( ),x y  scatterplot data assuming errors 

in the y-values only and is based on M-estimation incorporating Iteratively Reweighted Least Squares 

(IRLS).  To properly explain Lowess we have given a brief history and explanation of the theory of least 

squares with some examples to demonstrate its application in linear regression and shown that least squares 

estimates are equivalent to Best Linear Unbiased Estimates and Maximum Likelihood Estimates.  In 

addition, we have given an introduction to M-estimation incorporation robust weighting functions and IRLS 

and some information and examples on the use of Median Absolute Deviation (MAD) as a robust estimator 

of scale of a distribution.  Our explanation of these topics is supported by several appendices with technical 

detail.  Finally, with the aid of GNU Octave code, we have given a detailed explanation of the Lowess 

smoothing procedure. 
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Appendix A: Global Warming Trend Line Data 

Table A1 shows the data for Figure 1.  The values in the columns headed Anomaly are temperature 

anomalies in oC related to a global average for the years 1951-1980.  The values in the columns headed 

Lowess are robust estimates of anomalies using the Lowess smoothing procedure. 

 

Year Anomaly Lowess 
1880  -0.16  -0.09 
1881  -0.08  -0.12 
1882  -0.10  -0.16 
1883  -0.16  -0.19 
1884  -0.28  -0.23 
1885  -0.32  -0.25 
1886  -0.30  -0.26 
1887  -0.35  -0.26 
1888  -0.16  -0.26 
1889  -0.10  -0.25 
1890  -0.34  -0.24 
1891  -0.22  -0.25 
1892  -0.26  -0.26 
1893  -0.31  -0.25 
1894  -0.29  -0.23 
1895  -0.21  -0.21 
1896  -0.10  -0.19 
1897  -0.10  -0.17 
1898  -0.25  -0.15 
1899  -0.16  -0.16 
1900  -0.07  -0.19 
1901  -0.15  -0.22 
1902  -0.27  -0.25 
1903  -0.36  -0.28 
1904  -0.46  -0.31 
1905  -0.26  -0.34 
1906  -0.22  -0.36 
1907  -0.39  -0.37 
1908  -0.43  -0.39 
1909  -0.49  -0.41 
1910  -0.43  -0.41 
1911  -0.44  -0.39 
1912  -0.36  -0.35 
1913  -0.34  -0.32 
1914  -0.15  -0.31

Year Anomaly Lowess 
1915  -0.14  -0.30 
1916  -0.36  -0.30 
1917  -0.46  -0.30 
1918  -0.30  -0.30 
1919  -0.28  -0.29 
1920  -0.27  -0.28 
1921  -0.19  -0.26 
1922  -0.28  -0.25 
1923  -0.26  -0.24 
1924  -0.27  -0.23 
1925  -0.22  -0.22 
1926  -0.10  -0.22 
1927  -0.22  -0.21 
1928  -0.20  -0.20 
1929  -0.36  -0.19 
1930  -0.16  -0.19 
1931  -0.09  -0.19 
1932  -0.16  -0.18 
1933  -0.28  -0.17 
1934  -0.13  -0.16 
1935  -0.20  -0.14 
1936  -0.15  -0.11 
1937  -0.03  -0.06 
1938   0.00  -0.01 
1939  -0.02   0.03 
1940   0.13   0.06 
1941   0.19   0.09 
1942   0.07   0.11 
1943   0.09   0.10 
1944   0.20   0.07 
1945   0.09   0.04 
1946  -0.07   0.00 
1947  -0.03  -0.04 
1948  -0.11  -0.07 
1949  -0.11  -0.08

Year Anomaly Lowess 
1950  -0.17  -0.08 
1951  -0.07  -0.07 
1952   0.01  -0.07 
1953   0.08  -0.07 
1954  -0.13  -0.07 
1955  -0.14  -0.06 
1956  -0.19  -0.05 
1957   0.05  -0.04 
1958   0.06  -0.01 
1959   0.03   0.02 
1960  -0.02   0.03 
1961   0.06   0.02 
1962   0.04  -0.01 
1963   0.05  -0.02 
1964  -0.20  -0.04 
1965  -0.11  -0.05 
1966  -0.06  -0.06 
1967  -0.02  -0.05 
1968  -0.08  -0.03 
1969   0.05  -0.02 
1970   0.02  -0.01 
1971  -0.08   0.00 
1972   0.01   0.00 
1973   0.16  -0.00 
1974  -0.07   0.00 
1975  -0.01   0.02 
1976  -0.10   0.04 
1977   0.18   0.07 
1978   0.07   0.12 
1979   0.16   0.16 
1980   0.26   0.20 
1981   0.32   0.21 
1982   0.14   0.22 
1983   0.31   0.21 
1984   0.16   0.21

Year Anomaly Lowess 
1985   0.12   0.22 
1986   0.18   0.24 
1987   0.32   0.27 
1988   0.38   0.30 
1989   0.27   0.33 
1990   0.45   0.33 
1991   0.40   0.32 
1992   0.22   0.33 
1993   0.23   0.33 
1994   0.31   0.34 
1995   0.45   0.37 
1996   0.33   0.40 
1997   0.46   0.42 
1998   0.61   0.45 
1999   0.39   0.47 
2000   0.40   0.50 
2001   0.54   0.53 
2002   0.63   0.55 
2003   0.62   0.59 
2004   0.54   0.61 
2005   0.68   0.62 
2006   0.64   0.63 
2007   0.66   0.63 
2008   0.54   0.64 
2009   0.66   0.64 
2010   0.72   0.65 
2011   0.61   0.66 
2012   0.64   0.70 
2013   0.68   0.74 
2014   0.75   0.79 
2015   0.90   0.83 
2016   1.02   0.87 
2017   0.92   0.91 
2018   0.85   0.95 
2019   0.98   0.98 
 

Table 1.  NASA/GISS Global Land-Ocean Temperature Index 1880-2019 
https://data.giss.nasa.gov/gistemp/graphs/graph_data/Global_Mean_Estimates_

based_on_Land_and_Ocean_Data/graph.txt 

 

 

 

  



LOWESS for Surveyors 

 

 

44 

Appendix B: The Gaussian or Normal Distribution 

Gauss (1809) defines an error M V∆ = −  where M is a measurement and V is a function of unknown 

quantities whose values are to be determined.  He then proposes that ( )φ ∆  be a function of these (random) 

errors that will assign a probability for each error and describes the general form this function should take: it 

should have a maximum value for 0∆ = ; it should be equal, generally, for equal and opposite values of ∆ ; 

and it should converge to zero, asymptotically, as ∆  becomes a large positive number or a large negative 

number.  He then states that the probability that an error lies between the limits ∆  and d∆ ∆+  is 

( )dφ ∆ ∆  and that the integral ( ) 1dφ ∆ ∆

+∞

−∞

=∫ . 

These are the basic properties of a probability density function (pdf), and Gauss then deduces the form of 

( )φ ∆  from axioms associated with the measurement process as ( ) 2 2hke ∆φ ∆ −=  where k is a constant and h 

is a measure of precision and since ( ) 1dφ ∆ ∆

+∞

−∞

=∫  then 
2 2

1hk e d∆ ∆

+∞
−

−∞

=∫ , and, acknowledging the elegant 

theorem first discovered by Laplace that the integral 
2 2he d

h
∆ π
∆

+∞
−

−∞

=∫ , [see Appendix C], then determines 

the constant k since 
2 2

1hk e d k
h

∆ π
∆

+∞
−

−∞

= =∫  giving 
h

k
π

=  and the error function or pdf as 

 ( ) 2 2hh
e ∆φ ∆
π

−=  (78) 

The curve of the error function ( )φ ∆  is the familiar bell-shaped curve associated with probability and the 

Gaussian distribution (see Figure B1). 

It is now usual to think of a random variable X taking values x drawn from an infinite population with mean 

µ  and variance 2σ and with random errors x∆ µ= −  from a population with precision 2

2

1

2
h

σ
=  equation 

(78) becomes 

 ( )
2

1
21

2

x

Xf x e

µ

σ

σ π

 −  −    =  (79) 

This is the modern form of the pdf of the Gaussian distribution which is now commonly called the Normal 

distribution and the notation ( )2,X N µ σ∼  is taken to mean the random variable X is normally distributed 

with a mean µ  and variance 2σ . 
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Figure B1.  Normal probability density functions for a random variable ( )2,X N µ σ∼  where the left-hand 

curve is 1, 0.5µ σ= = , the middle curve is 2, 2µ σ= =  and the right-hand curve is 5, 1µ σ= =  

The area under the probability density curve is unity, i.e., ( ) 1Xf x dx

+∞

−∞

=∫ , that can be verified as follows: 

( ) ( )
1
2

0 0

2
2

2

x

X Xf x dx f x dx e dx

µ

σ

σ π

 −+∞ ∞ ∞  −    

−∞

= =∫ ∫ ∫  and letting 
x

t
µ

σ

−
=  then 

dx
dt

σ
=  

or dx dtσ=  and ( )
2 2

0

2

2

t

Xf x dx e dt
π

+∞ ∞
−

−∞

=∫ ∫ .  Now using the probability integral 

2 2 1
2

0

2
t

e dt π

∞
− =∫  [see Appendix C, equation (100)] it follows that ( ) 1Xf x dx

+∞

−∞

=∫ . 

And the probability that a random variable X lies between any two values x a=  and x b=  is the area 

under the density curve between these two values and is written as 

 ( ) ( )
2

1
21

Pr
2

xx b b

X

x a a

a X b f x dx e dx

µ

σ

σ π

 −=  −    

=

< < = =∫ ∫  (80) 

For continuous random variables X with probability density function (pdf) ( )Xf x , the cumulative 

distribution function (cdf) ( )XF x  has the following properties 

 1. ( ) ( ) ( )Pr

x

X XF x X x f x dx

−∞

= ≤ = ∫  

 2. ( ) ( )X X

d
F x f x

dx
=  

For the Normal distribution with pdf ( )
2

1
21

2

x

Xf x e

µ

σ

σ π

 −  −    =  the cumulative distribution function is 
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li
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( )xF
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 ( )
2

1
21

2

xx

XF x e dx

µ

σ

σ π

 −  −    

−∞

= ∫  (81) 

The curve of the Normal cumulative distribution function is a sigmoid or s-shaped curve symmetric about 

the mean µ  and asymptotic to the lines ( ) 0XF x =  and ( ) 1XF x =  

 

Figure B2.  Normal cumulative density functions for a random variable ( )2,X N µ σ∼  where 2, 2µ σ= =  

The probability p of a random variable ( )2,X N µ σ∼  taking a value q≤  is shown schematically in Figure 

B3 as; (i) the shaded area under the curve of the pdf on the left, and (ii) the value p on the ( )XF x  axis 

corresponding to the value q on the x-axis of the curve of the cdf on the right and  

 ( )
2

1
21

2

xx q

Xp F q e dx

µ

σ

σ π

 −=  −    

−∞

= = ∫  (82) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3.  Schematic diagram of the ( )Pr X q≤  
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Transforming the random variable X to random variable Z using the transformation 

 
X

Z
µ

σ

−
=  (83) 

gives 

 

( ) ( ) ( )

2

1
2

Pr Pr Pr

1
exp

2

z

X

z

X
Z z z X z F u du

X
du

µ σ

µ σ

µ
µ σ

σ

µ

σσ π

+

−∞
+

−∞

 − ≤ = ≤  = ≤ + =   
   −  = −         

∫

∫
 

Put u vµ σ= + , where 0σ > , then du dvσ=  and 

 ( ) { }21
2

1
Pr exp

2

z

Z z v dv
π −∞

≤ = −∫  (84) 

By symmetry 

 

( )
21

2

2

1
2

0

2
1 1
2 2

0

1
2

1
2

1

2

2

1 erf
2

1 erf
2

z
v

Z

z

v

F z e dv

e dv

z

x

π

π

µ

σ

−

−

= +

     = +      
   = +       
  −  = +       

∫

∫

 (85) 

where ( ) 2

0

2
erf

x

vx e dv
π

−= ∫  is the error function for 2x z=  (see Appendix D) 

For example, suppose that ( )22,2X N∼ .  What is the probability p that 3.6X ≤ ? 

 ( ) ( ) ( )( )1
2

1 1 3.6 2 0.8
Pr 1 erf    where    

22 2 2 2
X

z x
p F q X q q q

µ

σ

   − −  = = ≤ = + = =  =  =       
 

 ( )( ) ( )1 1
2 2

1 erf 1 0.576289 0.788145p q= + = + =  

GNU Octave has function erf() and the probability p (above) can be computed from the following 

instructions in the GNU Octave Command Window. 

>> root2 = sqrt(2); 

>> mu = 2; 

>> sigma = 2; 
>> x = 3.6; 
>> z = (x - mu)/sigma 

z = 0.8 

>> erf = erf(z/root2) 
erf = 0.5762892028332066 

>> p = 0.5*(1 + erf) 
p = 0.7881446014166034 

>> 
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Appendix C: The Probability Integral 

Laplace’s theorem 

Gauss (1809, p. 258) credits Pierre-Simon Laplace (1749–1827) with first discovering the theorem that gives 

the solution to the integral 

 
2 2he d

h
∆ π
∆

+∞
−

−∞

=∫  (86) 

This theorem is given in Théorie Analytique des Probabilities (Laplace 1820, p. 96) as 

 ( ) ( )
( )

22

0 0
1

sin

n nr n rt tn t e dt t e dt
r

n

π

π

∞ ∞
− −− − =

 −     

∫ ∫  (87) 

And for 2, 2r n= =  (87) becomes 
2

2

0

4 te dt π

∞
−

    =    
∫  and as Laplace notes ‘cette formule donne ce résultant 

remarquable’ (this formula gives this remarkable result) 

 
2 1

2
0

te dt π

∞
− =∫  (88) 

Now let 2 2t au=  where a is a positive constant and 2 2t dt audu=  giving 
u a

dt a du du
t a

= =  since 

1u

t a
=  and 

2 2 1
2

0 0

t aua
e dt e du

a
π

∞ ∞
− −= =∫ ∫ , and with a change of variable 

 
2

0

1

2
ate dt

a

π
∞
− =∫  (89) 

The integral result (86) shown in Gauss (1809) is obtained from (89) by first noting that 

2 2

0

2at ate dt e dt π

+∞ ∞
− −

−∞

= =∫ ∫  and then letting t ∆=  then 2a h=  giving 

 
2 2he d

h
∆ π
∆

+∞
−

−∞

=∫  

In the derivation of his theorem (87) Laplace makes use of the double integral 

 ( )1

0 0

ns x

x s

I e ds dx

∞ ∞
− +

= =

= ∫ ∫  (90) 

Evaluating the integral ( )1

0

ns x

s

e ds

∞
− +

=
∫  using the rule 

ax
ax e

e dx
a

=∫  gives 

( ) ( )1 1

00

1 1 1
0

1 1 1

n n
s

s x s x

n n n
ss

e ds e
x x x

∞ =∞
− + − +

==

    = − = − −  =     + + + 
∫  and substituting this result into (90) 

gives 

 

0
1 n

x

dx
I

x

∞

=

=
+∫
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Laplace then states that this integral is equal to 

sinn
n

π

π     

 where n is any integer or fractional number.  This 

can be verified by numerical methods and Peyam (2018) has a YouTube video showing the solution with the 

aid of Euler’s Gamma function and Beta function.  Using this result in (90) gives 

 ( )1

0 0 sin

ns x

x s

I e dsdx

n
n

π

π

∞ ∞
− +

= =

= =
     

∫ ∫  (91) 

Separating the integrals in (91) gives 

 

0 0 sin

ns sx

s x

e ds e dx

n
n

π

π

∞ ∞
− −

= =

        =                

∫ ∫  (92) 

With the substitution n nsx t=  in the 2nd integral of (92) then 1 1n nnsx dx nt dt− −=  and 
n nsx t

dx dt
x t

=  or

x
dx dt

t
= .  But, since n nsx t=  then 

1
n

x

t s

   =   
 and 

1

1
n

x

t s
=  giving 

1

1
n

dx dt
s

=  and 

1
0 0

1n nsx t

n
x t

e dx e dt
s

∞ ∞
− −

= =

=∫ ∫ .  Substituting this result into (92) gives 

 
1

0 0 sin

n
s

t

n
s t

e
ds e dt

s n
n

π

π

∞ ∞−
−

= =

        =                

∫ ∫  (93) 

Letting ns t=  in the 1st integral of (93) then 1nds nt dt−=  and ( )11 nn ns t t= =  and 

2

1
0 0

n
s

n t

n
s t

e
ds n t e dt

s

∞ ∞−
− −

= =

=∫ ∫ .  Substituting this result into (93) gives 

 2

0 0 sin

n nn t t

t t

n t e dt e dt

n
n

π

π

∞ ∞
− − −

= =

=
     

∫ ∫  (94) 

Replacing n  with 
1

n

r −
 in (94) gives 

 
( )( ) ( )( ) ( )( ) ( )

( )
1 1

2
1 22

0 0

1

1
sin

n r n rn r t t

t t

r
n t e dt e dt

r

n

π

π

− −
∞ ∞

− − − −

= =

−
=

 −     

∫ ∫  

And replacing t with 1rt −  gives (Laplace, 1820, p.96) 

 ( ) ( )
( )

22

0 0
1

sin

n nr n rt tn t e dt t e dt
r

n

π

π

∞ ∞
− −− − =

 −     

∫ ∫  (87) 
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An Alternative derivation of Laplace’s Theorem 

One of the authors, Max Hunter, has a lovely derivation of Laplace’s Theorem that begins with the definition 

of Euler’s Gamma function 

 ( ) 1

0

z tz t e dt

∞
− −Γ = ∫  (95) 

[This integral arose from studies by Euler in 1729 to find an expression for !n  as an integral wherein values 

other than positive integers may be substituted.  The Greek Γ  (gamma) is due to A.M. Legendre (1752–

1833) and this integral is also known as the second Eulerian integral.  The first Eulerian integral is the Beta 

function.  Davis (1959) has a nice history of Euler’s Gamma function and it is likely that Laplace knew of 

and used Euler’s integral, but perhaps didn’t see the connection with his theorem.] 

Let nt p=  then 1ndt np dp−=  and after some algebra the integral becomes 

 ( ) 1

0

,   for 0
nnz pz n p e dp z

∞
− −Γ = >∫  (96) 

Now, in (95) replacing t with s and z with 1 z−  gives 

 ( )
0

1 z sz s e dz

∞
− −Γ − = ∫  

Let ns q=  then 1nds nq dq−=  and 

 ( ) ( )11

0

1
nn z qz n q q e dq

∞
−− −Γ − = ∫  (97) 

Multiplying (96) and (97) together gives 

 ( ) ( ) ( )1 12 1

0 0

1   for 0 1
n nn znz p qz z n p e dp q e dq z

∞ ∞
− −− − −Γ Γ − = < <∫ ∫  

and using Euler’s reflection formula (Davis 1959) 

 ( ) ( )1
sin

z z
z

π

π
Γ Γ − =  

we may write 

 ( )1 12 1

0 0

  for 0 1
sin

n nn znz p qn p e dp q e dq z
z

π

π

∞ ∞
− −− − − = < <∫ ∫  (98) 

Let 
1r

z
n

−
=  where 1 1r n< < +  and n is a positive integer then 1 2nz r− = − , ( )1 1n z n r− − = − , 

and (98) becomes 

 
( )

2 2

0 0
1

sin

n nr p n r qn p e dp q e dq
r

n

π

π

∞ ∞
− − − − =

 −     

∫ ∫  (99) 

which is Laplace’s Theorem (87) 
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The Probability Integral 

An important integral in probability theory is the probability integral and it has several forms, two of which 

are: 

 
22 21 1

2 2
0 0

:       or      : 2
ttA e dt B e dtπ π

∞ ∞
−− = =∫ ∫  (100) 

To obtain A use Laplace’s theorem (87) with 2, 2r n= =  as shown above [see (88)]. 

To obtain B use (89) with 1
2

a =  

This result (B) is also obtained (in a number of ways) by the late Professor P.M. Lee (1940–2017) of the 

University of York, who references both Laplace (1820) and Todhunter (1865).  And Paul J. Nahin has 

several interesting derivations of these results in his book Inside Interesting Integrals. 

 

Appendix D: The Error Function ( )erf x  and the Complimentary Error 

Function ( )erfc x  

Suppose a random variable X has a Gaussian probability density function (pdf) of the form 

 ( ) 2ax
X

a
f x e

π

−=  

The area under the density curve is unity that can be verified as follows: 

( ) ( ) 2

0 0

2 2 ax
X X

a
f x dx f x dx e dx

π

+∞ ∞ ∞
−

−∞

= =∫ ∫ ∫  and letting t a x=  then dt a dx=  or 

dt
dx

a
=  and ( ) 2

0

2 t
Xf x dx e dt

π

+∞ ∞
−

−∞

=∫ ∫ .  Now using the probability integral 

2 1
2

0

te dt π

∞
− =∫  [see Appendix B, equation (100)] it follows that ( ) 1Xf x dx

+∞

−∞

=∫ . 

The cumulative distribution function (cdf) ( ) ( ) ( )Pr

x

X XF x X x f x dx

−∞

= ≤ = ∫  and 

 ( ) ( ) ( ) 2 21 1 1
2 2 2

0 0 0

1
Pr

x x x a

au t
X X

a
F x X x f u du e du e dt

π π

− −= ≤ = + = + = +∫ ∫ ∫  

using a u t= , a du dt=  where 0a > , then 

 ( ) ( )( )1
2

1 erfXF x x a= +  

where ( ) 2

0

2
erf

x a

tx a e dt
π

−= ∫  is the Error Function for the pdf ( ) 2ax
X

a
f x e

π

−= . 

The error function for the random variable ( )2,X N u σ∼  where the pdf is ( )
2

1
21

2

x

Xf x e

µ

σ

σ π

 −  −    =  is 

2

0

2
erf   where  

2 2

t

tx x
e dt t

µ µ

σ π σ

− − −  = =    ∫  and ( ) 1
Pr 1 erf

2 2

x
X x

µ

σ

  −  ≤ = +       
 



LOWESS for Surveyors 

 

 

52 

The error function for the random variable ( )0,1Z N∼  where the pdf is ( )
21

2
1

2

z

Zf z e
π

−=  is 

2

0

2
erf  where 

2 2

t

tz z
e dt t

π

−   = =    ∫  and ( ) 1
Pr 1 erf

2 2

z
Z z

   ≤ = +       
. 

In general, the Error Function ( )erf x  is defined as 

 ( ) 2

0

2
erf

x

tx e dt
π

−= ∫  (101) 

And noting that ( ) 2 2 2 2

0 0

2 2 2
erf 1

x

t t t t

x x

x e dt e dt e dt e dt
π π π

∞ ∞ ∞
− − − −

    = = − = −     
∫ ∫ ∫ ∫  the Complimentary 

Error Function ( )erfc x  is defined as 

 ( ) ( ) 22
erfc 1 erf t

x

x x e dt
π

∞
−= − = ∫  (102) 

The integral in the error function ( ) 2

0

2
erf

x

tx e dt
π

−= ∫  cannot be evaluated in terms of elementary 

functions but instead is evaluated by numerical methods depending on series expansions of the exponential 

function xe  

Expanding xe  using Maclaurin’s theorem gives the convergent series 

 
2 3

0

1       
! 2! 3!

n
x

n

x x x
e x x

n

∞

=

= = + + + + −∞ < < ∞∑ ⋯  

Hence 

 
( )2

2 4 6
2

0

1
1

! 2! 3!

n n
t

n

t t t
e t

n

∞
−

=

−
= = − + − +∑ ⋯  

Substitution into the integral and evaluating gives 

 
( ) ( )

( )
( )
( )

2
2 2 1 2 1

0 0 00 0
0

1 1 1

! 2 1 ! 2 1 !

x
n n nx x n n n

t

n n n

t t x
e dt dt

n n n n n

+ +∞ ∞ ∞
−

= = =

 − − − 
= = = 

 + +
  

∑ ∑ ∑∫ ∫  

And the error function 

 ( )
( )
( )

2 1 3 5 7 9

0

12 2
erf

2 1 ! 1 0! 3 1! 5 2! 7 3! 9 4 !

n n

n

x x x x x x
x

n nπ π

+∞

=

 −   = = − + − + −  + ⋅ ⋅ ⋅ ⋅ ⋅  
∑ ⋯  (103) 

This series converges rapidly for small values of x ( )say 1x <  and since it is an alternating series an upper 

bound of the error committed in truncating the series is the first term omitted. 
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For larger values of x ( )say 1x >  the approach is to use the complimentary error function (102) as an 

indirect method of computing ( )erf x  since ( ) ( )erfc 1 erfx x= −  and Tellambura & Annamalai (2000, eqn 

(12), p. 530) provide an efficient convergent series for ( )erfc x  

 ( ) ( )
2 2 2

2 2 2 2
1

1
erfc 2

n Nx n h

a
n

hxe e
x x

x n h x
ε

π

=− −

=

  = + +   + 
∑  (104) 

where N is the series truncation point, h is ‘sampling factor’ (the method is based on Shannon sampling 

theory) and ( )a xε  is the total approximation error which is bounded.  The authors provide a formula for the 

error bound and show that this bound depends on the three parameters x, h and N and state: “for fixed h and 

N, the error bound decreases with increasing x.  This suggests that once suitable values for h and N are 

chosen for, say, 0x x= , those values can be used for all 0x x≥ .”  Tellambura & Annamalai (2000) provide 

a table of values that has been reproduced here as Table C1. 

 

0x  h N ( )0erfc x  RE ( )0a xε  bound 

1 0.24 19 1.57299207050(1) 5(11) 8(11) 4(7) 

2 0.43 10 4.67773498105(3) 7(11) 8(13) 2(8) 

3 0.54 8 2.20904969985(5) 5(11) 1(15) 1(8) 

4 0.6 7 1.54172579002(8) 5(11) 8(19) 5(11) 

5 0.6 7 1.53745979442(12) 2(11) 3(23) 6(15) 

8 0.6 7 1.12242971729(29) 5(11) 5(40) 7(32) 

10 0.6 7 2.088487583762(45) 5(11) 1(55) 2(47) 

 

Table C1.  Use of (104) to compute ( )erfc x .  Parameters h and N to achieve a 

relative error less than 101 10−×  for all 0x x≥  

In Table C1, the relative error is defined as 
( )
( )erfc

a x
RE

x

ε
= , ( )a n  denotes 10 na −× , bound is the error 

bound and the reference error function ( )0erfc x  is from a standard Maple implementation.   

For a given x there exists an optimum h value for the use of (104) and Tellambura & Annamalai (2000, 

section C, p. 531) have empirically determined suitable h and N so that the relative error is less than 1010−  

using Maple with 200-digit precision. 

Most mathematical software packages (Maple, Mathematica, Matlab, R, etc.) have functions to compute the 

error function ( )erf x  and the complimentary error function ( )erfc x .  GNU Octave has functions erf() and 

erfc() that give the following results in the Octave Command Window. 

>> format long g 
>> a = erf(0.5) 

a = 0.5204998778130465 

>> b = erfc(0.5) 

b = 0.4795001221869535 
>> a + b 

ans = 1 

>> 
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Using equations (103) and (104) the following function written in GNU Octave computes values for the error 

functions ( )erf x  and ( )erfc x . 

function erff(x) 

% 

% function erff(x) computes the error function erf(x) and the 
% complimentary error function erfc(x) using numerical routines in 

% Appendix C, LOWESS for Surveyors 

%-------------------------------------------------------------------------- 
 

if (x < 1)  

  % use equation (71) to compute erf(x) 

  x2 = x*x; 
  numerator = x; 
  factorial = 1; 

  sum = x; 

  sign = 1; 
  for n = 2:25 

    sign = -sign; 

    numerator = numerator*x2; 
    denominator = (2*n-1)*factorial; 
    factorial = factorial*n; 

    sum = sum + sign*numerator/denominator; 

  end 
  erff = 2/sqrt(pi)*sum 
  % compute complimentary error function erfc(x) = 1 – erf(x) 

  erffc = 1-erff 

else   
  % use equation (72) to compute erfc(x) and then erf(x) = 1-erfc(x) 

  N = 25; 

  h = 0.24; 
  h2 = h*h; 
  x2 = x*x; 

  sum = 0; 

  for n = 1:N 
    k = n*n*h2; 
    sum = sum + exp(-k)/(k+x2); 

  end 

  erffc = h*x*exp(-x2)/pi*(1/x2+2*sum); 
  % compute error function erf(x) = 1 – erfc(x) 

  erff = 1-erffc 

  erffc 
endif 
end 

 

The Octave Command Window shows the results: 

>> erff(0.5) 

erff = 0.5204998778130465 
erffc = 0.4795001221869535 
>> 

 

These are identical (to the 16th decimal) with the Octave functions erf() and erfc(). 
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Appendix E: Population Median and Median Absolute Deviation (MAD) 

The derivation of the probability statements ( ) 1
Pr MAD

2
X µ− ≤ =  and 

MAD 3
Pr

4
Z

σ

  ≤  =   
 are the 

work of one of the co-authors, Dr Max Hunter, who turned his keen eye and talent for rigour to a topic not 

often treated in the statistical literature.  It’s a joy. 

Let X be a random variable with density function ( )Xf x  and distribution function ( )XF x , so that 

( ) ( )
x

X XF x f y dy

−∞

= ∫ , or ( ) ( )X X

d
F x f x

dx
= . 

The population median m is defined by the solution of the integral equation 

 ( ) ( ) ( ) 1
Pr

2

m

X XX m F m f x dx

−∞

≤ = = =∫  (105) 

The alternative equation 

 ( ) 1

2X

m

f x dx

∞

=∫  (106) 

Can also be used to define m. 

Let the random variable Y be defined by 

 
,  if 

0
,  if 

X m X m
Y X m

m X X m

 − ≥≤ = − =  − <
 

And suppose its density function is ( )Yg y  with distribution function ( )YG y .  Then for 0y ≥ , 

 

( ) ( )
( )
( )
( )
( ) ( )
( ) ( )

Pr

Pr

Pr

Pr

Pr Pr

Y

X X

G y Y y

X m y

y X m y

m y X m y

X m y X m y

F m y F m y

= ≤

= − ≤

= − ≤ − ≤
= − ≤ ≤ +

= ≤ + − ≤ −
= + − −

 

And for ( )0, 0Yy G y< = . 

Hence for 0y ≥  

 ( ) ( ) ( ) ( ){ } ( ) ( )Y Y X X X X

d d
g y G y F m y F m y f m y f m y

dy dy
= = + − − = + + −  

and ( ) 0Yg y =  for 0y < . 

The population median M of the random variable Y satisfies the equation 

 ( ) 1

2

M

Yg y dy

−∞

=∫  

And 
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( ) ( ) ( ) ( )

( ) ( ){ }

( ) ( )

( )

0

0 0

0

     (with substitutions , )

M M M

Y Y Y Y

M

X X

m M m M

X X

m m
m M

X

m M

g y dy g y dy g y dy g y dy

f m y f m y dy

f s ds f t dt s m y t m y

f s ds

−∞ −∞

+ −

+

−

= + =

= + + −

= − = + = −

=

∫ ∫ ∫ ∫

∫

∫ ∫

∫

 

and therefore 

 ( ) 1

2

m M

X

m M

f s ds

+

−

=∫  (107) 

Suppose now that ( )Xf x  is symmetric about the origin then 0m =  from (105).  So by (107) 

 ( ) ( )
0

1
2

2

M M

X X

M

f x dx f x dx

−

= =∫ ∫  

and therefore 

 ( )
0

1

4

M

Xf x dx =∫  

Thus the interval ,M M −   encloses an area of 0.5 under the density function for X, or since 

 ( ) 3

4

M

Xf x dx

−∞

=∫ , 

M is the 75 percentile of X. 

But M is just the definition of MAD, so for any random variable X with population mean { }E X µ=  and a 

symmetric density function about { }E X µ=  

 ( ) 1
Pr MAD

2
X µ− ≤ =  (108) 

Now 

 

( ) MAD
Pr MAD Pr

MAD
Pr    

MAD MAD
Pr    by definition of modulus

MAD MAD
Pr Pr    by symmetry

MAD MAD
=Pr 1 Pr

X
X

Z

Z

Z Z

Z Z

µ
µ

σ σ

σ

σ σ

σ σ

σ σ

 −  − ≤ = ≤   
 = ≤    
 = − ≤ ≤    
     = ≤  − ≤ −        
   ≤  − − ≤    

   by definition

MAD
2Pr 1Z

σ

     
 = ≤  −   

 

and, using (108) 
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MAD 3

Pr
4

Z
σ

  ≤  =   
 (109) 

If ( )Zf z  is the density function of the standard normal distribution and ( )ZF z  is the distribution function 

(see Appendix B) then 

 1MAD 3

4ZF
σ

−  =    
 (110) 

Where 1
ZF−  denotes the standard normal inverse cumulative distribution function.  Most mathematical 

software packages (Maple, Mathematica, Matlab, R, etc.) have functions to compute inverse cumulative 

distribution functions and for the standard normal distribution GNU Octave has a function norminv() that 

computes the value of ( )1
ZF x−  and for ( )1MAD 3 4ZFσ −=  can be computed from the following 

instructions in the Octave Command Window. 

 

>> format long g 

>> MAD_on_sigma = norminv(3/4) 

MAD_on_sigma = 0.6744897501960818 
>> 
 

And 

 1 8
M

0.67448975019608
AD 3

1
4ZF

σ

−  =  ≈   
 (111) 

Inspection of (58) leads to  

 1.482602218505602
MAD

b
σ

= ≈  (112) 

We can use this relationship to estimate the standard deviation from 

 ( )ˆ MAD 1.4826 MADbσ = × ≈  (113) 
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Appendix F: GNU Octave function M_estimate 

 

function M_estimate 
% 
% M_estimate regression 

%  

%  two data files are available: 
%  (1) Data Set from Rousseeuw & Leroy (Belgium Telephone Dataset) 

%       c:\temp\belgium data.txt 
%  (2) Dataset from G.W. Dombi 

%       c:\temp\biweight data.txt 
 

%========================================================================== 

% Function:  M_estimate 
% 
% Author: 

%  Rod Deakin,  

%  DUNSBOROUGH, WA, 6281 
%  AUSTRALIA 

%  email: randm.deakin@gmail.com 
% 

% Date: 
%  Version 1.0  18 November 2019 

% 

% Remarks: 
%  This function uses M-estimation (Iterative Reweighted Least Squares with  
%  Tukey's bisquare weight function) to find the parameters beta0 and beta1 of  

%  the regression line y = beta0 + beta1*x. 

%  Initial values of beta0, beta1 are calculated using Least Squares (unit  

%  weights). 
% 
% References: 

% 
% Arrays: 

%  newW      - (n,1) vector of new weights 

%  Time      - (n,1) vector of times 
%  V         - (n,1) vector of residuals V = Yhat-Y 
%  W         - (n,1) vector of weights 

%  X         - (n,1) vector of X-values beginning at 1 

%  Y         - (n,1) vector of Y-values 

%  Yhat      - (n,1) vector of estimates 
% 
% Variables: 

%  b         - multiplier for MAD where S = b*MAD  

%  beta0     - intercept b0 on Y-axis 
%  beta1     - gradient b1 of straight line Y(j) = beta0 + beta1*X(j) 

%  c         - tuning constant (c = 4.685 for Tukey's biweight) 
%  iter      - iteration number 
%  j         - integer counter 

%  k         - scale factor for residuals k = c*S 

%  LSbeat0   - b0 for Least Squares estimate 

%  LSbeta1   - b1 for Least Squares estimate 
%  M         - median of sample 
%  MAD       - Median of the Absolute Deviations of the sample from its median 

%  Mbeat0    - b0 for M-estimate 

%  Mbeta1    - b1 for M-estimate 
%  n         - number of elements in time series 

%  offset    - difference between X values beginning at 0 and vector Time 
%  S         - estimate of scale S = b*MAD 
%  sumW      - sum of weights 

%  sumWX     - sum of W(j)*X(j) 

%  sumWY     - sum of W(j)*Y(j) 

%  sumWXY    - sum of W(j)*X(j)*Y(j) 
%  sumWX2    - sum of W(j)*X(j)*X(j) 
%  test      - test = sum(W) for iteration convergence 

%  u         - scaled residuals: u = V(j)/k 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Read data from text file %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%------------------------------------------------------------------------- 

% 1. Call the User Interface (UI) to choose the input data file name 
% 2. Concatenate strings to give the path and file name of the input file 

% 3. Strip off the extension from the file name to give the rootName 

% 4. Add extension ".out" to rootName to give the output filename 

% 5. Concatenate strings to give the path and file name of the output file 
%------------------------------------------------------------------------- 

filepath = strcat('c:\temp\','*.txt'); 

[infilename,inpathname] = uigetfile(filepath); 

infilepath = strcat(inpathname,infilename); 
rootName   = strtok(infilename,'.'); 
outfilename = strcat(rootName,'.out'); 

outfilepath = strcat(inpathname,outfilename); 

 
%---------------------------------------------------------- 

% 1. Load the data into an array whose name is the rootName 

% 2. set fileTemp = rootName 
% 3. Copy columns of data into individual arrays 

%---------------------------------------------------------- 

fileTemp = load(infilepath); 

Time     = fileTemp(:,1); 
Y        = fileTemp(:,2); 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Compute the M-estimate regression line y = b0 + b1*x %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% determine the number of data points 
n = length(Time); 
 

% calculate the offset to reduce the Time vector to vector X beginning at 0 

offset = Time(1);    % for Belgium Telephone Dataset 
X = Time-offset;     % for Belgium Telephone Dataset 
%X = Time;            % for G.W. Dombi dataset 

 

% set vector of weights at unity for initial solution 
W = ones(n,1); 

 
% set tuning constant 

c = 4.685; 
 

% set multiplier for MAD where S = b*MAD 

b = 1.4826;    % for Belgium Telephone Dataset 
%b = 1;         % for G.W. Dombi dataset 
test = sum(W); 

iter = 0; 

while (1) 
   

  % determine least squares line of best fit: Yhat(j) = beat0 + beta1*X(j) 
  sumW = sum(W); 

  sumWX = sum(W.*X); 
  sumWY = sum(W.*Y); 

  sumWXY = sum((W.*X).*Y); 

  sumWX2 = sum((W.*X).*X); 
  % compute parameters beta0 (Y-intercept) and beta1 (gradient) 
  beta0 = (sumWX2*sumWY-sumWX*sumWXY)/(sumW*sumWX2-sumWX^2) 

  beta1 = (sumW*sumWXY-sumWX*sumWY)/(sumW*sumWX2-sumWX^2) 

 
  if iter == 0 

    % set parameters of the Least Squares line of best fit (equal weights) 
    LSbeta0 = beta0; 

    LSbeta1 = beta1; 
  endif   

   



LOWESS for Surveyors 

 

 

60 

  % compute estimates Yhat 

  Yhat = beta0 + (beta1.*X); 

  % compute residuals 
  V = Yhat-Y; 
  % compute median of residuals 

  M = median(V); 
  % compute Median Absolute Deviation 

  MAD = median(abs(V-M)); 

  % compute scale factor k 

  S = b*MAD; 
  k = c*S; 

   

  % compute new weights W using Tukey's bisquare weight function 

  newW = zeros(n,1); 
  for j = 1:n 
    u = V(j)/k; 

    if (abs(u) > 1) 

      newW(j) = 0; 
    else 

      newW(j) = (1-u^2)^2; 

    endif 
  end 

 

  % test the new weights newW to see if iterative process has converged 

  if abs(newW-W) < 1e-6 
    break; 
  endif 

  if iter > 30 

    fprintf('\nIteration for weights W failed to converge after 30 iterations\n\n'); 
    break; 

  endif 

  % update weights and iteration number 
  W = newW; 
  iter = iter+1; 

endwhile   

% set parameters of straight line from M-estimate 
Mbeta0 = beta0; 
Mbeta1 = beta1; 

 

% print results 
fprintf('\n\nM-estimation using Iteratively Reweighted Least Squares with'); 

fprintf('\nTukey''s biweight function'); 
fprintf('\nweights converged after %2d iterations',iter); 

fprintf('\ninitial parameters b0 = %9.6f and b1 = %9.6f',LSbeta0,LSbeta1); 
fprintf('\nfor the straight line y = b0 + b1*x from Least Squares solution with unit weights'); 

fprintf('\nFinal parameters b0 = %9.6f and b1 = %9.6f',Mbeta0,Mbeta1); 

fprintf('\n Weights'); 
for j = 1:n 
  fprintf('\n w(%2d) = %8.6f',j,W(j)); 

end   

fprintf('\n\n'); 
 

%%%%%%%%%%%%%% 
% plot data %% 

%%%%%%%%%%%%%% 
 

% Figure 1: Plot of data for Belgium Telephone Dataset 

 
x1 = [Time(1):0.1:Time(n)]; 
y1 = LSbeta0 + LSbeta1.*(x1-offset); 

x2 = x1; 

y2 = Mbeta0 + Mbeta1.*(x2-offset); 
 

figure(1); 
clf(1); 

hold on; 
grid on; 

box on; 
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% plot the data 

plot(Time,Y,'ks','MarkerSize',3); 

% plot the LS line of best fit 
plot(x1,y1,'k--','linewidth',1); 
% plot the M-estimate line of best fit 

plot(x2,y2,'k-','linewidth',1); 
% anotate the plot 

title('Belgium Telephone Dataset')  

xlabel('Year'); 

ylabel('Telephone calls (millions)'); 
 

end 

 

 

Output from function M_estimate using the Belgium Telephone Dataset is shown below 

M-estimation using Iteratively Reweighted Least Squares with 
Tukey's biweight function 
weights converged after 10 iterations 

initial parameters b0 = -0.800000 and b1 =  0.504239 
for the straight line y = b0 + b1*x from Least Squares solution with unit weights 

Final parameters b0 =  0.259264 and b1 =  0.110004 

 
 Weight 
 w( 1) = 0.908147 

 w( 2) = 0.976435 

 w( 3) = 0.999752 

 w( 4) = 0.999998 
 w( 5) = 0.995561 
 w( 6) = 0.981980 

 w( 7) = 0.965900 
 w( 8) = 0.936845

 Weight 
 w( 9) = 0.981974 

 w(10) = 0.993012 

 w(11) = 0.999751 

 w(12) = 0.998768 
 w(13) = 0.997291 
 w(14) = 0.537191 

 w(15) = 0.000000 
 w(16) = 0.000000

 Weight 
 w(17) = 0.000000 

 w(18) = 0.000000 

 w(19) = 0.000000 

 w(20) = 0.000000 
 w(21) = 0.000000 
 w(22) = 0.919113 

 w(23) = 0.998774 
 w(24) = 0.965063 
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Appendix G: FORTRAN program LOWESS 

https://github.com/andreas-h/pyloess/blob/master/src/lowess.f 

 

 

* wsc@research.bell-labs.com Mon Dec 30 16:55 EST 1985 1 
* W. S. Cleveland 2 
* Bell Laboratories 3 
* Murray Hill NJ 07974 4 
*  5 
* outline of this file: 6 
*    lines 1-72   introduction 7 
*        73-177   documentation for lowess 8 
*       178-238   ratfor version of lowess 9 
*       239-301   documentation for lowest 10 
*       302-350   ratfor version of lowest 11 
*       351-end   test driver and fortran version of lowess and lowest 12 
*  13 
*   a multivariate version is available by "send dloess from a" 14 
*  15 
*              COMPUTER PROGRAMS FOR LOCALLY WEIGHTED REGRESSION 16 
*  17 
*             This package consists  of  two  FORTRAN  programs  for 18 
*        smoothing    scatterplots   by   robust   locally   weighted 19 
*        regression, or lowess.   The  principal  routine  is  LOWESS 20 
*        which   computes   the  smoothed  values  using  the  method 21 
*        described in The Elements of Graphing Data, by William S. 22 
*        Cleveland    (Wadsworth,    555 Morego   Street,   Monterey, 23 
*        California 93940). 24 
*  25 
*             LOWESS calls a support routine, LOWEST, the code for 26 
*        which is included. LOWESS also calls a routine  SORT,  which 27 
*        the user must provide. 28 
*  29 
*             To reduce the computations, LOWESS  requires  that  the 30 
*        arrays  X  and  Y,  which  are  the  horizontal and vertical 31 
*        coordinates, respectively, of the scatterplot, be such  that 32 
*        X  is  sorted  from  smallest  to  largest.   The  user must 33 
*        therefore use another sort routine which will sort X  and  Y 34 
*        according  to X. 35 
*             To summarize the scatterplot, YS,  the  fitted  values, 36 
*        should  be  plotted  against X.   No  graphics  routines are 37 
*        available in the package and must be supplied by the user. 38 
*  39 
*             The FORTRAN code for the routines LOWESS and LOWEST has 40 
*        been   generated   from   higher   level   RATFOR   programs 41 
*        (B. W. Kernighan, ``RATFOR:  A Preprocessor for  a  Rational 42 
*        Fortran,''  Software Practice and Experience, Vol. 5 (1975), 43 
*        which are also included. 44 
*  45 
*             The following are data and output from LOWESS that  can 46 
*        be  used  to check your implementation of the routines.  The 47 
*        notation (10)v means 10 values of v. 48 
*  49 
*  50 
*  51 
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*  52 
*        X values: 53 
*          1  2  3  4  5  (10)6  8  10  12  14  50 54 
*  55 
*        Y values: 56 
*           18  2  15  6  10  4  16  11  7  3  14  17  20  12  9  13  1  8  5  19 57 
*  58 
*  59 
*        YS values with F = .25, NSTEPS = 0, DELTA = 0.0 60 
*         13.659  11.145  8.701  9.722  10.000  (10)11.300  13.000  6.440  5.596 61 
*           5.456  18.998 62 
*  63 
*        YS values with F = .25, NSTEPS = 0 ,  DELTA = 3.0 64 
*          13.659  12.347  11.034  9.722  10.511  (10)11.300  13.000  6.440  5.596 65 
*            5.456  18.998 66 
*  67 
*        YS values with F = .25, NSTEPS = 2, DELTA = 0.0 68 
*          14.811  12.115  8.984  9.676  10.000  (10)11.346  13.000  6.734  5.744 69 
*            5.415  18.998 70 
*  71 
*  72 
*  73 
*  74 
*                                   LOWESS 75 
*  76 
*  77 
*  78 
*        Calling sequence 79 
*  80 
*        CALL LOWESS(X,Y,N,F,NSTEPS,DELTA,YS,RW,RES) 81 
*  82 
*        Purpose 83 
*  84 
*        LOWESS computes the smooth of a scatterplot of Y  against  X 85 
*        using  robust  locally  weighted regression.  Fitted values, 86 
*        YS, are computed at each of the  values  of  the  horizontal 87 
*        axis in X. 88 
*  89 
*        Argument description 90 
*  91 
*              X = Input; abscissas of the points on the 92 
*                  scatterplot; the values in X must be ordered 93 
*                  from smallest to largest. 94 
*              Y = Input; ordinates of the points on the 95 
*                  scatterplot. 96 
*              N = Input; dimension of X,Y,YS,RW, and RES. 97 
*              F = Input; specifies the amount of smoothing; F is 98 
*                  the fraction of points used to compute each 99 
*                  fitted value; as F increases the smoothed values 100 
*                  become smoother; choosing F in the range .2 to 101 
*                  .8 usually results in a good fit; if you have no 102 
*                  idea which value to use, try F = .5. 103 
*         NSTEPS = Input; the number of iterations in the robust 104 
*                  fit; if NSTEPS = 0, the nonrobust fit is 105 
*                  returned; setting NSTEPS equal to 2 should serve 106 
*                  most purposes. 107 
*          DELTA = input; nonnegative parameter which may be used 108 
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*                  to save computations; if N is less than 100, set 109 
*                  DELTA equal to 0.0; if N is greater than 100 you 110 
*                  should find out how DELTA works by reading the 111 
*                  additional instructions section. 112 
*             YS = Output; fitted values; YS(I) is the fitted value 113 
*                  at X(I); to summarize the scatterplot, YS(I) 114 
*                  should be plotted against X(I). 115 
*             RW = Output; robustness weights; RW(I) is the weight 116 
*                  given to the point (X(I),Y(I)); if NSTEPS = 0, 117 
*                  RW is not used. 118 
*            RES = Output; residuals; RES(I) = Y(I)-YS(I). 119 
*  120 
*  121 
*        Other programs called 122 
*  123 
*               LOWEST 124 
*               SSORT 125 
*  126 
*        Additional instructions 127 
*  128 
*        DELTA can be used to save computations.   Very  roughly  the 129 
*        algorithm  is  this:   on the initial fit and on each of the 130 
*        NSTEPS iterations locally weighted regression fitted  values 131 
*        are computed at points in X which are spaced, roughly, DELTA 132 
*        apart; then the fitted values at the  remaining  points  are 133 
*        computed  using  linear  interpolation.   The  first locally 134 
*        weighted regression (l.w.r.) computation is carried  out  at 135 
*        X(1)  and  the  last  is  carried  out at X(N).  Suppose the 136 
*        l.w.r. computation is carried out at  X(I).   If  X(I+1)  is 137 
*        greater  than  or  equal  to  X(I)+DELTA,  the  next  l.w.r. 138 
*        computation is carried out at X(I+1).   If  X(I+1)  is  less 139 
*        than X(I)+DELTA, the next l.w.r.  computation is carried out 140 
*        at the largest X(J) which is greater than or equal  to  X(I) 141 
*        but  is not greater than X(I)+DELTA.  Then the fitted values 142 
*        for X(K) between X(I)  and  X(J),  if  there  are  any,  are 143 
*        computed  by  linear  interpolation  of the fitted values at 144 
*        X(I) and X(J).  If N is less than 100 then DELTA can be  set 145 
*        to  0.0  since  the  computation time will not be too great. 146 
*        For larger N it is typically not necessary to carry out  the 147 
*        l.w.r.  computation for all points, so that much computation 148 
*        time can be saved by taking DELTA to be  greater  than  0.0. 149 
*        If  DELTA =  Range  (X)/k  then,  if  the  values  in X were 150 
*        uniformly  scattered  over  the  range,  the   full   l.w.r. 151 
*        computation  would be carried out at approximately k points. 152 
*        Taking k to be 50 often works well. 153 
*  154 
*        Method 155 
*  156 
*        The fitted values are computed by using the nearest neighbor 157 
*        routine  and  robust locally weighted regression of degree 1 158 
*        with the tricube weight function.  A few additional features 159 
*        have  been  added.  Suppose r is FN truncated to an integer. 160 
*        Let  h  be  the  distance  to  the  r-th  nearest   neighbor 161 
*        from X(I).   All  points within h of X(I) are used.  Thus if 162 
*        the r-th nearest neighbor is exactly the  same  distance  as 163 
*        other  points,  more  than r points can possibly be used for 164 
*        the smooth at  X(I).   There  are  two  cases  where  robust 165 
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*        locally  weighted regression of degree 0 is actually used at 166 
*        X(I).  One case occurs when  h  is  0.0.   The  second  case 167 
*        occurs  when  the  weighted  standard error of the X(I) with 168 
*        respect to the weights w(j) is  less  than  .001  times  the 169 
*        range  of the X(I), where w(j) is the weight assigned to the 170 
*        j-th point of X (the tricube  weight  times  the  robustness 171 
*        weight)  divided by the sum of all of the weights.  Finally, 172 
*        if the w(j) are all zero for the smooth at X(I), the  fitted 173 
*        value is taken to be Y(I). 174 
*  175 
*  176 
*  177 
*  178 
*  subroutine lowess(x,y,n,f,nsteps,delta,ys,rw,res) 179 
*  real x(n),y(n),ys(n),rw(n),res(n) 180 
*  logical ok 181 
*  if (n<2){ ys(1) = y(1); return } 182 
*  ns = max0(min0(ifix(f*float(n)),n),2)  # at least two, at most n points 183 
*  for(iter=1; iter<=nsteps+1; iter=iter+1){      # robustness iterations 184 
*         nleft = 1; nright = ns 185 
*         last = 0        # index of prev estimated point 186 
*         i = 1   # index of current point 187 
*         repeat{ 188 
*                 while(nright<n){ 189 
*  # move nleft, nright to right if radius decreases 190 
*                         d1 = x(i)-x(nleft) 191 
*                         d2 = x(nright+1)-x(i) 192 
*  # if d1<=d2 with x(nright+1)==x(nright), lowest fixes 193 
*                         if (d1<=d2) break 194 
*  # radius will not decrease by move right 195 
*                         nleft = nleft+1 196 
*                         nright = nright+1 197 
*                         } 198 
*                 call lowest(x,y,n,x(i),ys(i),nleft,nright,res,iter>1,rw,ok) 199 
*  # fitted value at x(i) 200 
*                 if (!ok) ys(i) = y(i) 201 
*  # all weights zero - copy over value (all rw==0) 202 
*                 if (last<i-1) { # skipped points -- interpolate 203 
*                         denom = x(i)-x(last)    # non-zero - proof? 204 
*                         for(j=last+1; j<i; j=j+1){ 205 
*                                 alpha = (x(j)-x(last))/denom 206 
*                                 ys(j) = alpha*ys(i)+(1.0-alpha)*ys(last) 207 
*                                 } 208 
*                         } 209 
*                 last = i        # last point actually estimated 210 
*                 cut = x(last)+delta     # x coord of close points 211 
*                 for(i=last+1; i<=n; i=i+1){     # find close points 212 
*                         if (x(i)>cut) break     # i one beyond last pt within cut 213 
*                         if(x(i)==x(last)){      # exact match in x 214 
*                                 ys(i) = ys(last) 215 
*                                 last = i 216 
*                                 } 217 
*                         } 218 
*                 i=max0(last+1,i-1) 219 
*  # back 1 point so interpolation within delta, but always go forward 220 
*                 } until(last>=n) 221 
*         do i = 1,n      # residuals 222 
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*                 res(i) = y(i)-ys(i) 223 
*         if (iter>nsteps) break  # compute robustness weights except last time 224 
*         do i = 1,n 225 
*                 rw(i) = abs(res(i)) 226 
*         call sort(rw,n) 227 
*         m1 = 1+n/2; m2 = n-m1+1 228 
*         cmad = 3.0*(rw(m1)+rw(m2))      # 6 median abs resid 229 
*         c9 = .999*cmad; c1 = .001*cmad 230 
*         do i = 1,n { 231 
*                 r = abs(res(i)) 232 
*                 if(r<=c1) rw(i)=1.      # near 0, avoid underflow 233 
*                 else if(r>c9) rw(i)=0.  # near 1, avoid underflow 234 
*                 else rw(i) = (1.0-(r/cmad)**2)**2 235 
*                 } 236 
*         } 237 
*  return 238 
*  end 239 
* 240 
* 241 
* 242 
* 243 
* 244 
*                                   LOWEST 245 
*  246 
*  247 
*        Calling sequence 248 
*  249 
*        CALL LOWEST(X,Y,N,XS,YS,NLEFT,NRIGHT,W,USERW,RW,OK) 250 
*  251 
*        Purpose 252 
*  253 
*        LOWEST is a support routine for LOWESS and  ordinarily  will 254 
*        not  be  called  by  the  user.   The  fitted  value, YS, is 255 
*        computed  at  the  value,  XS,  of  the   horizontal   axis. 256 
*        Robustness  weights,  RW,  can  be employed in computing the 257 
*        fit. 258 
*  259 
*        Argument description 260 
*  261 
*  262 
*              X = Input; abscissas of the points on the 263 
*                  scatterplot; the values in X must be ordered 264 
*                  from smallest to largest. 265 
*              Y = Input; ordinates of the points on the 266 
*                  scatterplot. 267 
*              N = Input; dimension of X,Y,W, and RW. 268 
*             XS = Input; value of the horizontal axis at which the 269 
*                  smooth is computed. 270 
*             YS = Output; fitted value at XS. 271 
*          NLEFT = Input; index of the first point which should be 272 
*                  considered in computing the fitted value. 273 
*         NRIGHT = Input; index of the last point which should be 274 
*                  considered in computing the fitted value. 275 
*              W = Output; W(I) is the weight for Y(I) used in the 276 
*                  expression for YS, which is the sum from 277 
*                  I = NLEFT to NRIGHT of W(I)*Y(I); W(I) is 278 
*                  defined only at locations NLEFT to NRIGHT. 279 
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*          USERW = Input; logical variable; if USERW is .TRUE., a 280 
*                  robust fit is carried out using the weights in 281 
*                  RW; if USERW is .FALSE., the values in RW are 282 
*                  not used. 283 
*             RW = Input; robustness weights. 284 
*             OK = Output; logical variable; if the weights for the 285 
*                  smooth are all 0.0, the fitted value, YS, is not 286 
*                  computed and OK is set equal to .FALSE.; if the 287 
*                  fitted value is computed OK is set equal to 288 
*  289 
*  290 
*        Method 291 
*  292 
*        The smooth at XS is computed using (robust) locally weighted 293 
*        regression of degree 1.  The tricube weight function is used 294 
*        with h equal to the maximum of XS-X(NLEFT) and X(NRIGHT)-XS. 295 
*        Two  cases  where  the  program  reverts to locally weighted 296 
*        regression of degree 0 are described  in  the  documentation 297 
*        for LOWESS. 298 
* 299 
* 300 
* 301 
* 302 
*  subroutine lowest(x,y,n,xs,ys,nleft,nright,w,userw,rw,ok) 303 
*  real x(n),y(n),w(n),rw(n) 304 
*  logical userw,ok 305 
*  range = x(n)-x(1) 306 
*  h = amax1(xs-x(nleft),x(nright)-xs) 307 
*  h9 = .999*h 308 
*  h1 = .001*h 309 
*  a = 0.0        # sum of weights 310 
*  for(j=nleft; j<=n; j=j+1){     # compute weights (pick up all ties on right) 311 
*         w(j)=0. 312 
*         r = abs(x(j)-xs) 313 
*         if (r<=h9) {    # small enough for non-zero weight 314 
*                 if (r>h1) w(j) = (1.0-(r/h)**3)**3 315 
*                 else      w(j) = 1. 316 
*                 if (userw) w(j) = rw(j)*w(j) 317 
*                 a = a+w(j) 318 
*                 } 319 
*         else if(x(j)>xs)break   # get out at first zero wt on right 320 
*         } 321 
*  nrt=j-1        # rightmost pt (may be greater than nright because of ties) 322 
*  if (a<=0.0) ok = FALSE 323 
*  else { # weighted least squares 324 
*         ok = TRUE 325 
*         do j = nleft,nrt 326 
*                 w(j) = w(j)/a   # make sum of w(j) == 1 327 
*         if (h>0.) {     # use linear fit 328 
*                 a = 0.0 329 
*                 do j = nleft,nrt 330 
*                         a = a+w(j)*x(j) # weighted center of x values 331 
*                 b = xs-a 332 
*                 c = 0.0 333 
*                 do j = nleft,nrt 334 
*                         c = c+w(j)*(x(j)-a)**2 335 
*                 if(sqrt(c)>.001*range) { 336 
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*  # points are spread out enough to compute slope 337 
*                         b = b/c 338 
*                         do j = nleft,nrt 339 
*                                 w(j) = w(j)*(1.0+b*(x(j)-a)) 340 
*                         } 341 
*                 } 342 
*         ys = 0.0 343 
*         do j = nleft,nrt 344 
*                 ys = ys+w(j)*y(j) 345 
*         } 346 
*  return 347 
*  end 348 
* 349 
* 350 
* 351 
c  test driver for lowess 352 
c  for expected output, see introduction 353 
      double precision x(20), y(20), ys(20), rw(20), res(20) 354 
      data x /1,2,3,4,5,10*6,8,10,12,14,50/ 355 
      data y /18,2,15,6,10,4,16,11,7,3,14,17,20,12,9,13,1,8,5,19/ 356 
      call lowess(x,y,20,.25,0,0.,ys,rw,res) 357 
      write(6,*) ys 358 
      call lowess(x,y,20,.25,0,3.,ys,rw,res) 359 
      write(6,*) ys 360 
      call lowess(x,y,20,.25,2,0.,ys,rw,res) 361 
      write(6,*) ys 362 
      end 363 
c************************************************************** 364 
c  Fortran output from ratfor 365 
c 366 
      subroutine lowess(x, y, n, f, nsteps, delta, ys, rw, res) 367 
      integer n, nsteps 368 
      double precision x(n), y(n), f, delta, ys(n), rw(n), res(n) 369 
      integer nright, i, j, iter, last, mid(2), ns, nleft 370 
      double precision cut, cmad, r, d1, d2 371 
      double precision c1, c9, alpha, denom, dabs 372 
      logical ok 373 
      if (n .ge. 2) goto 1 374 
         ys(1) = y(1) 375 
         return 376 
c at least two, at most n points 377 
   1  ns = max(min(int(f*dble(n)), n), 2) 378 
      iter = 1 379 
         goto  3 380 
   2     iter = iter+1 381 
   3     if (iter .gt. nsteps+1) goto  22 382 
c robustness iterations 383 
         nleft = 1 384 
         nright = ns 385 
c index of prev estimated point 386 
         last = 0 387 
c index of current point 388 
         i = 1 389 
   4        if (nright .ge. n) goto  5 390 
c move nleft, nright to right if radius decreases 391 
               d1 = x(i)-x(nleft) 392 
c if d1<=d2 with x(nright+1)==x(nright), lowest fixes 393 
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               d2 = x(nright+1)-x(i) 394 
               if (d1 .le. d2) goto  5 395 
c radius will not decrease by move right 396 
               nleft = nleft+1 397 
               nright = nright+1 398 
               goto  4 399 
c fitted value at x(i) 400 
   5        call lowest(x, y, n, x(i), ys(i), nleft, nright, res, iter 401 
     +     .gt. 1, rw, ok) 402 
            if (.not. ok) ys(i) = y(i) 403 
c all weights zero - copy over value (all rw==0) 404 
            if (last .ge. i-1) goto 9 405 
               denom = x(i)-x(last) 406 
c skipped points -- interpolate 407 
c non-zero - proof? 408 
               j = last+1 409 
                  goto  7 410 
   6              j = j+1 411 
   7              if (j .ge. i) goto  8 412 
                  alpha = (x(j)-x(last))/denom 413 
                  ys(j) = alpha*ys(i)+(1.D0-alpha)*ys(last) 414 
                  goto  6 415 
   8           continue 416 
c last point actually estimated 417 
   9        last = i 418 
c x coord of close points 419 
            cut = x(last)+delta 420 
            i = last+1 421 
               goto  11 422 
  10           i = i+1 423 
  11           if (i .gt. n) goto  13 424 
c find close points 425 
               if (x(i) .gt. cut) goto  13 426 
c i one beyond last pt within cut 427 
               if (x(i) .ne. x(last)) goto 12 428 
                  ys(i) = ys(last) 429 
c exact match in x 430 
                  last = i 431 
  12           continue 432 
               goto  10 433 
c back 1 point so interpolation within delta, but always go forward 434 
  13        i = max(last+1, i-1) 435 
  14        if (last .lt. n) goto  4 436 
c residuals 437 
         do  15 i = 1, n 438 
            res(i) = y(i)-ys(i) 439 
  15        continue 440 
         if (iter .gt. nsteps) goto  22 441 
c compute robustness weights except last time 442 
         do  16 i = 1, n 443 
            rw(i) = dabs(res(i)) 444 
  16        continue 445 
         call ssort(rw,n) 446 
         mid(1) = n/2+1 447 
         mid(2) = n-mid(1)+1 448 
c 6 median abs resid 449 
         cmad = 3.D0*(rw(mid(1))+rw(mid(2))) 450 
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         c9 = .999999D0*cmad 451 
         c1 = .000001D0*cmad 452 
         do  21 i = 1, n 453 
            r = dabs(res(i)) 454 
            if (r .gt. c1) goto 17 455 
               rw(i) = 1.D0 456 
c near 0, avoid underflow 457 
               goto  20 458 
  17           if (r .le. c9) goto 18 459 
                  rw(i) = 0.D0 460 
c near 1, avoid underflow 461 
                  goto  19 462 
  18              rw(i) = (1.D0-(r/cmad)**2.D0)**2.D0 463 
  19        continue 464 
  20        continue 465 
  21        continue 466 
         goto  2 467 
  22  return 468 
      end 469 
       470 
       471 
      subroutine lowest(x, y, n, xs, ys, nleft, nright, w, userw 472 
     +, rw, ok) 473 
      integer n 474 
      integer nleft, nright 475 
      double precision x(n), y(n), xs, ys, w(n), rw(n) 476 
      logical userw, ok 477 
      integer nrt, j 478 
      double precision dabs, a, b, c, h, r 479 
      double precision h1, dsqrt, h9, max, range 480 
      range = x(n)-x(1) 481 
      h = max(xs-x(nleft), x(nright)-xs) 482 
      h9 = .999999D0*h 483 
      h1 = .000001D0*h 484 
c sum of weights 485 
      a = 0.D0 486 
      j = nleft 487 
         goto  2 488 
   1     j = j+1 489 
   2     if (j .gt. n) goto  7 490 
c compute weights (pick up all ties on right) 491 
         w(j) = 0.D0 492 
         r = dabs(x(j)-xs) 493 
         if (r .gt. h9) goto 5 494 
            if (r .le. h1) goto 3 495 
               w(j) = (1.D0-(r/h)**3.D0)**3.D0 496 
c small enough for non-zero weight 497 
               goto  4 498 
   3           w(j) = 1.D0 499 
   4        if (userw) w(j) = rw(j)*w(j) 500 
            a = a+w(j) 501 
            goto  6 502 
   5        if (x(j) .gt. xs) goto  7 503 
c get out at first zero wt on right 504 
   6     continue 505 
         goto  1 506 
c rightmost pt (may be greater than nright because of ties) 507 
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   7  nrt = j-1 508 
      if (a .gt. 0.D0) goto 8 509 
         ok = .false. 510 
         goto  16 511 
   8     ok = .true. 512 
c weighted least squares 513 
         do  9 j = nleft, nrt 514 
c make sum of w(j) == 1 515 
            w(j) = w(j)/a 516 
   9        continue 517 
         if (h .le. 0.D0) goto 14 518 
            a = 0.D0 519 
c use linear fit 520 
            do  10 j = nleft, nrt 521 
c weighted center of x values 522 
               a = a+w(j)*x(j) 523 
  10           continue 524 
            b = xs-a 525 
            c = 0.D0 526 
            do  11 j = nleft, nrt 527 
               c = c+w(j)*(x(j)-a)**2 528 
  11           continue 529 
            if (dsqrt(c) .le. .0000001D0*range) goto 13 530 
               b = b/c 531 
c points are spread out enough to compute slope 532 
               do  12 j = nleft, nrt 533 
                  w(j) = w(j)*(b*(x(j)-a)+1.D0) 534 
  12              continue 535 
  13        continue 536 
  14     ys = 0.D0 537 
         do  15 j = nleft, nrt 538 
            ys = ys+w(j)*y(j) 539 
  15        continue 540 
  16  return 541 
      end 542 
 543 
       544 
      subroutine ssort(a,n) 545 
 546 
C Sorting by Hoare method, C.A.C.M. (1961) 321, modified by Singleton 547 
C C.A.C.M. (1969) 185. 548 
   double precision a(n) 549 
   integer iu(16), il(16) 550 
      integer p 551 
 552 
      i =1 553 
      j = n 554 
      m = 1 555 
  5   if (i.ge.j) goto 70 556 
c first order a(i),a(j),a((i+j)/2), and use median to split the data 557 
 10   k=i 558 
      ij=(i+j)/2 559 
      t=a(ij) 560 
      if(a(i) .le. t) goto 20 561 
      a(ij)=a(i) 562 
      a(i)=t 563 
      t=a(ij) 564 
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 20   l=j 565 
      if(a(j).ge.t) goto 40 566 
      a(ij)=a(j) 567 
      a(j)=t 568 
      t=a(ij) 569 
      if(a(i).le.t) goto 40 570 
      a(ij)=a(i) 571 
      a(i)=t 572 
      t=a(ij) 573 
      goto 40 574 
 30   a(l)=a(k) 575 
      a(k)=tt 576 
 40   l=l-1 577 
      if(a(l) .gt. t) goto 40 578 
      tt=a(l) 579 
c split the data into a(i to l) .lt. t, a(k to j) .gt. t 580 
 50   k=k+1 581 
      if(a(k) .lt. t) goto 50 582 
      if(k .le. l) goto 30 583 
      p=m 584 
      m=m+1 585 
c split the larger of the segments 586 
      if (l-i .le. j-k) goto 60 587 
      il(p)=i 588 
      iu(p)=l 589 
      i=k 590 
      goto 80 591 
 60   il(p)=k 592 
      iu(p)=j 593 
      j=l 594 
      goto 80 595 
 70   m=m-1 596 
      if(m .eq. 0) return 597 
      i =il(m) 598 
      j=iu(m) 599 
c short sections are sorted by bubble sort 600 
 80   if (j-i .gt. 10) goto 10 601 
      if (i .eq. 1) goto 5 602 
      i=i-1 603 
 90   i=i+1 604 
      if(i .eq. j) goto 70 605 
      t=a(i+1) 606 
      if(a(i) .le. t) goto 90 607 
      k=i 608 
 100  a(k+1)=a(k) 609 
      k=k-1 610 
      if(t .lt. a(k)) goto 100 611 
      a(k+1)=t 612 
      goto 90 613 
 614 
      end      615 
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