

1

LOWESS/LOESS FOR SURVEYORS

R.E. Deakin1 and M.N. Hunter2
1Dunsborough, WA, 6281, Australia; 2Maribyrnong, VIC, 3032, Australia

email: randm.deakin@gmail.com

17-Sep-2020

Abstract

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm

introduced by William S. Cleveland in 1979. The procedure uses M-estimation, incorporating Iteratively

Reweighted Least Squares, and is particularly useful in showing smoothed values of the dependent y-variable

in x-y scatter plots. Loess (locally weighted regression) was introduced by Cleveland and Susan J. Devlin in

1988 as an extension of Lowess – but without M-estimation – applied to the estimation of regression surfaces.

This aim of this article is to show, through examples, how the theory of least squares and M-estimation is

applied to regression analysis.

Keywords

Lowess, Loess, smoothing, least squares, M-estimation, robust, regression

Introduction

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm

proposed by William S. Cleveland (Cleveland 1979). For n data pairs (),i ix y 1,2, ,i n= … where the x-

values are considered as independent and error-free and the y-values as measurements subject to error, the

algorithm assumes the n points are ordered from smallest to largest x-value and selects a ‘smoothing point’

point, say (),s sx y 1,2, ,s n= … and its q nearest neighbours, noting that the smoothing point (),s sx y is a

neighbour of itself. These q nearest neighbours are a subset of the n data pairs and the algorithm fits a low-

order polynomial to the subset that is used to calculate the estimate ()ˆ,s sx y . Cleveland (1979, p. 833)

suggests that polynomials of degree 1: 0 1y xβ β= + (a straight line) or degree 2: 2
0 1 2y x xβ β β= + + (a

quadratic curve) are sufficient for most purposes and notes that the polynomial of degree 1 “should almost

always provide adequate smoothed points and computational ease.” In this paper we only consider

polynomials of degree 1. Now, since only two points are required to define a straight line, and q will always

be greater than 2 in practice, least squares is used to determine estimates of the parameters of the line of best

fit with local weights 0 1jw≤ ≤ for 1,2, ,j q= … as functions of the distances from the smoothing point

(),s sx y to each of the q nearest neighbours multiplied by robustness weights 0 1r
jw≤ ≤ . The local weight

function most often used in Lowess smoothing is known as tricube (more about this later) and yields weights

that decrease from 1 at the smoothing point to 0 at the furthest of the q points. The robustness weights are

computed from weighting functions associated with M-estimation (more about these later) and are functions

of residuals ˆi i iv y y= − . The initial values of the robustness weights are unity. After computing 0 1,β β , the

estimate ŝy at the smoothing point is computed from 0 1ŝ sy xβ β= + and the residual ˆs s sv y y= − . Now

the smoothing point index is increased by one, i.e., 1s s= + and the next subset of q nearest neighbours

determined (which may be the same subset as the previous reference point) with weights that are the

product of local weights and robustness weights and a new line of best fit computed yielding the next

estimate ŝy . And this process is repeated until s n= and residuals are known at all points, and a new set

of robustness weights 0 1r
iw≤ ≤ for 1,2, ,i n= … computed. Now the entire process is repeated for

1,2, ,s n= … and the next set of robustness weights computed and so on until the robustness weights

converge to acceptable values. This process of refining the robustness weights is known as Iteratively

2

Reweighted Least Squares IRLS and is a feature of M-estimation. In practice, two or three iterations are

usually sufficient to give ‘final’ estimates ŝy at the smoothing points.

Loess (locally weighted regression) is a procedure for fitting a surface using multivariate smoothing and was

introduced by Cleveland and Susan J. Devlin in 1988 as an extension of Lowess to surface fitting but without

the use of robustness weights and iteratively reweighted least squares.

As an example of Lowess smoothing consider the Global Warming trend line in Figure 1

Figure 1. NASA/GISS1 Global Land-Ocean Temperature Index2 1880-2019

The trend line is a Lowess smoothed curve passing through points estimated from a

robust linear regression of a moving window of ()floorq f n= × data points where

()floor rounds down to the nearest integer, ()2019 1880 1 140n = − + = ,

0.072f = giving 10q = . The data are shown in Appendix A.

This paper is primarily directed at understanding how the Lowess smoothed curve in Figure 1 is obtained

and to show that Lowess is a useful procedure for analysing time series data encountered in surveying

applications, e.g., monitoring the position of objects over a period of time, analysing automatic height

recording equipment such as tide gauges, crustal motion surveys, etc. Lowess makes use of least squares and

robust estimation procedures and we have included sections on least squares setting out the theory and

relevant formula for the solution of linear regression problems as well as sections that show least squares

estimates as equivalent to Best Linear Unbiased Estimates (BLUE) and Maximum Likelihood Estimates

(MLE).

1 Goddard Institute of Space Studies (GISS) is located at Columbia University, New York and is a laboratory in the

Earth Sciences Division of the National Aeronautics and Space Administration’s (NASA) Goddard Space Flight Centre.

GISS is affiliated with the Columbia Earth Institute and School of Engineering and Applied Science.
2 The Land-Ocean Temperature Index (L-OTI) combines surface air temperature anomalies with sea surface temperature

anomalies (ships, buoys, satellites). The anomalies in 0C are related to a global average for the years 1951-1980.

(https://data.giss.nasa.gov/gistemp/faq/#q103)

3

These are followed by a section outlining the principles of M-Estimation that includes robust weighting

schemes and iteratively reweighted least squares. And after this is a detailed explanation of the Lowess

procedure. Of course, if least squares and M-estimation are familiar to you then those sections can be

skipped. We have included worked examples relevant to particular topics and there are Appendices with

detailed explanations of related topics

Nomenclature

The following notation has been used, noting that vectors are denoted by bold lowercase letters and matrices

by bold uppercase letters.

Symbol Meaning Definition

B (),n m coefficient matrix

b 1.4826b ≈ ˆ MADbσ = ⋅

c tuning constant

d (),1n vector of constant terms

∆ random error in Gauss’ error function

{ }E X expected value or expectation of X

e (),1n vector of random errors

()XF x cumulative distribution function

()Xf x probability density function

f proportion of points used in smoothing 0 1f< ≤

f (),1n vector of numeric terms = −f d l

g weighted mean

h measure of precision in Gauss’ error function; maximum

x-distance from smoothing point to a nearest neighbour

J Jacobian matrix of partial derivatives

k scale factor for residuals k c S=

L likelihood function

l (),1n vector of measurements

m number of unknowns in least squares estimate

M sample median or median of variables iv 1i n= … ()median iM v=

MAD Median of the Absolute Deviations from the data’s

median
()MAD median iv M= −

n number of measurements or data pairs

N (),m m coefficient matrix of normal equations T=N B WB

q number of nearest neighbours ()floorq f n= ×

Q logarithm of likelihood function L

Q symmetric cofactor matrix containing estimates of

variances (diagonal elements) and covariances (off-

diagonal elements)

1−=Q W

r the absolute value of the x-distance from the smoothing

point to a nearest neighbour; degrees of freedom

s integer index

S scale or variability of a set of residuals

t (),1m vector of numeric terms of normal equations T=t B Wf

4

Symbol Meaning Definition

iu scaled residual of ith point i iu v c= ɶ

,i iv vɶ residual of ith point, standardized residual ˆ ,i i i i iv y y v v S= − =ɶ

v (),1n vector of residuals

()w v weight function () ()w v v vψ=

iw weight associated with the ith point

W (),n n square symmetric weight matrix (diagonal if

measurements are independent)

x̂ (),1m vector of least squares estimates of parameters 1ˆ −=x N t

,i ix y data pairs for 1,2, ,i n= …

,s sx y x,y values of the smoothing point

îy estimated y-value

0 1,β β coefficients of 1st order polynomial

µ mean

()vρ arbitrary function of residuals () ()v v dvρ ψ= ∫

2ˆ, ,σ σ σ standard deviation, estimate of standard deviation,

variance

ϕ least squares function to be minimised

()vψ influence function () ()d
v v

dv
ψ ρ=

Least Squares: Brief history and two simple examples

The first published work on least squares was by the French mathematician A.M. Legendre in 1805

(Nouvelles Methodes pour la Determination des Orbites des Cometes). Legendre's work of viii + 80 pages

contained an Appendix of 9 pages where he set out his method "Sur la Methode des moindres quarres" and

gave a worked example. Sur la Methode des moindres quarres translates to On the method of least squares.

C.F. Gauss (1809) published "Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem

Ambientium" [Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections] in

which he states his rule: "... the most probable system of values of the quantities ... will be that in which the

sum of the squares of the differences between the actually observed and computed values multiplied by

numbers that measure the degree of precision, is a minimum" and bases this on his error function

() 2 2hh
e ∆φ ∆
π

−= where ∆ are random errors and h is a measure of precision. We now know this as the

'normal' law of error (normal distribution). Gauss gave examples of his method of least squares and stated

that he had been using this method since 1795.

This claim of priority in the discovery of the method of least squares sparked an international debate

(Plackett 1972, Stigler 1981) but modern treatments of the method usually acknowledge Gauss as the

inventor. Also, it has been demonstrated that the method does not require observations having particular

statistical distributions, merely that they be free of observational blunders and systematic errors. And

modern treatments use matrix algebra to describe the estimation process.

Both Gauss and Legendre developed the method of least squares in conjunction with studies in orbital

mechanics, particularly Gauss who used the method to help rediscover the minor planet Ceres from earlier

limited observations. And the logical extension of Gauss’ least squares method is embodied in the Kalman

5

Filter3, a least-squares estimation process used to derive position of bodies in motion from measurements

made at different instants of time. The Kalman Filter was an integral part of the navigation system of the

Apollo spacecraft and is one of the most useful applications in modern electro-mechanical systems. GPS

navigation and your FitBit watch wouldn’t work without least squares (and the Kalman Filter).

Examples below will demonstrate the Least Squares method and some definitions are useful.

First, it is assumed that we wish to estimate the values of certain quantities from measurements and that the

nature of measurement means that every measurement contains errors. These errors may be classified as

blunders, systematic errors and random errors. Blunders can be avoided by careful measurement process and

checking and systematic errors can be eliminated or corrected by a proper understanding and calibration of

measurement equipment and a knowledge of the environment in which the measurement is made.

Second, if blunders and systematic errors are eliminated, then the remaining random errors can be allowed

for by the application of small corrections known as residuals. Hence, we write

 measurement + residual = best estimate (1)

where ‘best estimate’ is a modern expression of Gauss’ ‘most probable value’.

Also, a quantity that is being measured has both a true value (forever unknown) and an estimated value (the

best estimate) and after removing blunders and systematic errors from the measurements leaving only

random errors of measurements, we may write

 measurement = true value + random error (2)

Lastly, weights and precision. Often, a measurement may be the mean of several measurements or

measurements may be obtained from different types of equipment or measurement processes and they may be

of varying precision. To allow for this in least squares estimation we may weight our measurements, where a

weight is a positive number that reflects the degree of confidence we have in the measurement. The greater

the weight the more confident we are in the particular measurement. A weight is often defined to be

inversely proportional to an estimate of the variance of a measurement where variance is a statistical

measure of precision. Precise measurements have a small variance.

Example A. Weighted Mean

Suppose 1,2, 3, ,i n= … measurements il are made of a quantity g and each measurement has an associated

weight iw . We may write n observation equations

 1 1 2 2, , , n nl v g l v g l v g+ = + = + =…

and the least squares function ϕ as

 () ()22 2 2 2
1 1 2 2

1 1

n n

n n i i i i
i i

g w v w v w v w v w g lϕ
= =

= + + + = = −∑ ∑⋯

Now we wish to obtain an estimate for g that makes ()gϕ a minimum. We know from calculus that ()gϕ

will have an optimum value (either a minimum or maximum) when 0
d

dg

ϕ
= and we will show later that this

optimum value will indeed be a minimum. Hence () mingϕ ⇒ when ()
1

2 0
n

i i
i

d
w g l

dg

ϕ

=

= − =∑ and

simplifying gives the weighted mean

3 Developed by Dr R.E. Kalman in 1960. The Kalman Filter is a recursive least squares estimation process

particularly suited to dynamic problems associated with navigation. It regularly appears in lists of the most

useful algorithms of the 20th century.

6

 i i

i

w l
g

w
= ∑
∑

where the following summation notations are equivalent: 1 2 3
1

n

k k k n
k k

v v v v v v v
=

= = = + + + +∑ ∑ ∑ ⋯

Example B. Distances between Three Points on a Straight Line

Consider the problem of determining the distances x and y between three points A,B,C on a straight line

when measurements (of varying precision) AB, AC and BC are made.

� � �

A B C

x y

Figure 2

Let the measurements 1 2 3, and AB l AC l BC l= = = with weights 1 2 3, and w w w respectively. Write

3n = observation equations that will involve the 2m = ‘unknowns’ x and y.

1 1

2 2

3 3

l v x

l v x y

l v y

+ =

+ = +
+ =

 (3)

and the least squares function ϕ as

 () () () ()2 2 22 2 2
1 1 2 2 3 3 1 1 2 2 3 3,x y w v w v w v w x l w x y l w y lϕ = + + = − + + − + −

Now we wish to obtain estimates for x and y that make (),x yϕ a minimum. As we will demonstrate later

(), minx yϕ ⇒ when the partial derivatives ,
x y

ϕ ϕ∂ ∂
∂ ∂

 both equal zero and this leads to

() ()

() ()

1 1 2 2

2 2 3 3

2 2 0

2 2 0

w x l w x y l
x

w x y l w y l
y

ϕ

ϕ

∂
= − + + − =

∂
∂
= + − + − =

∂

Cancelling the 2’s and simplifying gives 2m = normal equations

()

()
1 2 2 1 1 2 2

2 2 3 2 2 3 3

w w x w y w l w l

w x w w y w l w l

+ + = +
+ + = +

A Matrix Solution for Least Squares Problems

The solution of least squares problems can be simplified by the use of matrices (and matrix algebra and

matrix calculus) and we can use the example above to demonstrate some simple relationships

The observation equations (3) can be arranged in a matrix form where all the unknown quantities are on the

left-hand side of the equals sign and all the known quantities are on the right-hand side

1 1 1 1

2 2 2 2

3 3 3 3

1 0

1 1

0 1

l v x v l
x

l v x y v l
y

l v y v l

     + = − −            + = + ⇒ + − − = −             + = − −          

or + =v Bx f (4)

7

where v is an (),1n vector of residuals, B is an (),n m coefficient matrix, x is a (),1m vector of unknowns

that are to be estimated and f is an (),1n vector of numeric terms where

 = −f d l (5)

and d is an (),1n vector of constants that is often a vector of zeros and l is an (),1n vector of

measurements.

Associated with any set of independent measurements is a weight matrix W whose diagonal elements are the

weights iw for 1,2, 3, ,i n= … and all off-diagonal elements are zero and the least squares function ϕ can be

written in matrix form as

 () () ()2 2 2 2
1 1 2 2

1

n
TT

n n i i
i

w v w v w v w vϕ
=

= + + + = = = − −∑x v Wv f Bx W f Bx⋯ (6)

where the superscript T denotes matrix transpose and ()ϕ x is a scalar quantity (i.e. a number).

Many least squares problems can be described by a set of observation equations in the form of (4) and the

solutions for the unknowns in x can be obtained by minimizing the function ()ϕ x in the following way

Using (6) and the rules of matrix transpose where ()T T T T=ABC C B A… … and noting that T =W W since

W is symmetric we may write

() () ()
()()

2

T

T T T

T T T T T T

T T T T T

ϕ = − −

= − −

= − − +

= − +

x f Bx W f Bx

f x B Wf WBx

f Wf f WBx x B Wf x B WBx

f Wf x B Wf x B WBx (7)

Noting here that ()TT T T T= =f WBx f WBx x B Wf since each are scalar quantities

Now with the substitutions

 and T T= =N B WB t B Wf (8)

where N is a (),m m symmetric positive-definite matrix and t is a (),1m vector of numeric terms and the

least squares function (7) becomes

 () 2T T Tϕ = − +x f Wf x t x Nx (9)

The optimum value of ()ϕ x is obtained by partial differentiation with respect to the vector x to obtain

ϕ∂
∂x

 and then finding a set of values for x that will make this derivative equal to a vector of zeros.

Using the rules of matrix calculus (see for example Peterson & Pederson 2012) ()2 2T T∂
=

∂
x t t

x
 and

() 2T T∂
=

∂
x Nx x N

x
 gives the partial derivative of (9) as

 ()2 2 2T Tϕ∂
= − + = − −

∂
t x N t Nx

x

8

and
ϕ∂
=

∂
0

x
 when a particular set of values of x, denoted here as x̂ , and called the least squares

estimates, satisfy the normal equations

 ˆ =Nx t (10)

In order for the scalar ()ˆϕ x to be a minimum then () ()ˆ 0ϕ ϕ− >x x for all x near x̂ and this difference,

using (9) and (10) is

() ()

() ()
() ()

ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ2

ˆ ˆ ˆ

ˆ ˆ

T T T T

T T T T

T T T

T T

T

ϕ ϕ− = − + + −

= − + + −

= − + +

= − − + −

= − −

x x x t x Nx x t x Nx

x Nx x Nx x Nx x Nx

x Nx x Nx x Nx

x N x x x N x x

x x N x x (11)

Now () ()ˆ ˆ
T

− −x x N x x will always be positive since N is positive definite thus () ()ˆ 0ϕ ϕ− >x x for all

ˆ≠x x . So, the least squares estimates x̂ locates the minimum of ()ϕ x and the scalar minimum value is

 ()ˆ ˆ ˆ ˆ ˆ2T T T T Tϕ = − + = −x f Wf x t x Nx f Wf x t (12)

The solution steps

From the basic mathematical model linking measurements with quantities to be determined an observation

equation incorporating measurement residuals can be developed and then the following sequence can be

followed for a solution.

1. Form a set of n observation equations in the form + =v Bx f where = −f d l [eq’s (4) and (5)] and

the independent measurements l have an associated weight matrix W whose diagonal elements are the

positive weights iw for 1,2, 3, ,i n= … and all off-diagonal elements are zero.

2. Form the u normal equations =Nx t where and T T= =N B WB t B Wf [eq’s (10) and (8)]

3. Solve the normal equations for the least squares estimates 1ˆ −=x N t that make ()ˆϕ x a minimum

4. Calculate the residuals from ˆ= −v f Bx

5. Calculate the adjusted measurements from ˆ = +l l v

Least Squares and Propagation of Variances

A useful benefit of the least squares process using matrices is that propagation of variances, expressed as a

matrix operation, can be employed to the solution steps to allow estimation of the variances and covariances

of computed quantities. Propagation of variances (also known as error propagation) has a long association

with least squares. Indeed, Gauss (1809) gave expressions for the precision to be assigned to computed

quantities using his methods and since that time, in the surveying/geodesy professions, the methods of

propagation of variances have always been an intimate part of the least squares process.

We apply propagation of variances to two cases, linear and non-linear and in both cases we are considering

two vectors, y of order (),1n and z of order (),1m both containing random variables and each having

9

associated variance matrices

1 2 11

2 1 22

1 2

2

2

2

n

n

n n n

y y y yy

y y y yy
yy

y y y y y

σ σ σ

σ σ σ

σ σ σ

Σ

 
 
 
 
 =
 
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 and

1 2 11

2 1 22

1 2

2

2

2

m

m

m m m

z z z zz

z z z zz
zz

z z z z z

σ σ σ

σ σ σ

σ σ σ

Σ

 
 
 
 
 =
 
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 of orders

(),n n and (),m m respectively that are symmetric and where the leading-diagonal elements are variances

and the off-diagonal elements are covariances.

For linear functions:

 If = +y Az b and y and x are linearly related, A is an (),n m coefficient matrix and b is an (),1n

vector of constants then T
yy zzΣ Σ= A A

For non-linear functions:

 If ()f=y z and the elements of y are non-linear functions of the elements of z then T
yy yz zz yzΣ Σ= J J

where yz

∂
=
∂
y

J
z

 is the (),n m Jacobian matrix and

1 1 1 1

1 2 3

2 2 2 2

1 2 3

1 2 3

m

yx m

n n n n

m

y y y y

z z z z

y y y y

z z z z

y y y y

z z z x

 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
 = ∂ ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂  

J

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

Cofactor matrices and the Variance Factor

The rules of propagation of variances also apply to cofactor matrices Q that are related to variance matrices

by a constant 2
0σ known as the variance factor and 2

0xx xxσ= QΣ . Cofactor matrices contain estimates of

variances (leading-diagonal elements) and covariances (off-diagonal elements) in the form

1 2 11

2 1 22

1 2

2

2

2

n

n

n n n

x x x xx

x x x xx
xx

x x x x x

s s s

s s s

s s s

 
 
 
 
 =
 
 
 
  

Q

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

Cofactor matrices Q and weight matrices W have an inverse relationship and 1 1 or − −= =Q W W Q

An unbiased estimate of the variance factor, denoted as 2
0σ̂ can be computed from

 2
0

ˆ
ˆ

T T T

n m r
σ

−
= =

−
v Wv f Wf x t

 (13)

where r n m= − is known as the degrees of freedom and is equal to the number of redundancies in the least

squares problem.

To apply propagation of variances to the solution steps above we first consider the vector relationship

= −f d l and write this in the form ()= − +f I l d where the term in parentheses represents the coefficient

matrix A in the rule for propagation of variances for linear functions and

 () ()Tff ll ll= − − = =Q I Q I Q Q (14)

10

noting here that for estimates of variances and covariances, or weights of measurements the subscript ‘ll’ is

dropped from llQ and llW . Thus, the cofactor matrix of f is also the cofactor matrix of the observations l.

To apply propagation of variances for linear functions to the operations in the solution sequence the following

relationships are useful

() ()

() ()

1

1

1

1

ˆˆ ˆ

ˆ

ˆ

ˆ

T

T

T

−

−

−

−

= = = − = +

= − = + −

= − = −

= − = − +

t B W f x N t v f Bx l l v

f BN t l f Bx

f BN B Wf d Bx

I BN B W f B x d

and propagation of variances gives the following results

 () ()TT T T T
tt ff= = = =Q B W Q B W B WQWB B WB N

 () ()1 1 1 1 1
ˆˆ

T

xx tt
− − − − −= = =Q N Q N N NN N (15)

() ()
()()

1 1

1 1

1

T
T T

vv ff

T T

T

− −

− −

−

= − −

= − −

= −

Q I BN B W Q I BN B W

Q BN B I WBN B

Q BN B

() ()ˆ̂ ˆˆ

1

T

xxll

T

vv

−

= − −

=

= −

Q B Q B

BN B

Q Q

Example. Least Squares Linear Regression

Consider the simple regression problem of fitting the straight line 0 1y xβ β= + through a set of 35n =

data points (),i ix y 1,2, ,i n= … . The x-values are considered to be error free and the y-values are

measurements subject to error and each having an associated weight for 1,2, ,iw i n= … . A minimum of

two data points is necessary for determining estimates of the two parameters 0 1,β β (the ‘unknowns’) and

since there are a greater number than the minimum (i.e., redundant measurements), least squares can be

used to determine 0 1,β β and hence the best estimates 0 1î iy xβ β= + noting that the ‘hat’ symbol ()^

denotes an estimate of a quantity. The data and a scatterplot are shown below in Table 1 and Figure 3 and

are taken from Table 2.1 of Draper & Smith (1981)

11

 x y w
 1.15 0.99 1.24028
 1.90 0.98 2.18244

 3.00 2.60 7.84930
 3.00 2.67 7.84930
 3.00 2.66 7.84930
 3.00 2.78 7.84930
 3.00 2.80 7.84930

 5.34 5.92 7.43652
 5.38 5.35 6.99309
 5.40 4.33 6.78574
 5.40 4.89 6.78574
 5.45 5.21 6.30514

 x y w
 7.70 7.68 0.89204
 7.80 9.81 0.84420
 7.81 6.52 0.83963
 7.85 9.71 0.82171
 7.87 9.82 0.81296
 7.91 9.81 0.79588
 7.94 8.50 0.78342

 9.03 9.47 0.47385
 9.07 11.45 0.46621
 9.11 12.14 0.45878
 9.14 11.50 0.45327
 9.16 10.65 0.44968
 9.37 10.64 0.41435

 x y w
 10.17 9.78 0.31182
 10.18 12.39 0.31079
 10.22 11.03 0.30672
 10.22 8.00 0.30672
 10.22 11.90 0.30672
 10.18 8.68 0.31079
 10.50 7.25 0.28033
 10.23 13.46 0.30571
 10.03 10.19 0.32680
 10.23 9.93 0.30571

Table 1. Data for Weighted Least Squares Linear Regression (Draper & Smith, 1981, Table 2.1)

Figure 3. X,Y scatterplot. Data from Draper & Smith (1981, Table 2.1)

In Table 1, the values in the columns headed w are weights and they have been derived in the following

manner. There are 5 groupings of data associated with mean x-values 3.00, 5.39, 7.84, 9.15 and 10.22. For

each of these groups a sample variance ()22

1

1

1

n

k
k

s y y
n =

= −
− ∑ is calculated giving the set

2

3.00 5.39 7.84 9.15 10.22

0.0072 0.3440 1.7404 0.8683 3.8964

x

s

         =           
. A plot of these values revealed a quadratic relationship

and a least squares solution for the parameters yielded 2 21.5329 0.7334 0.0883s x x= − + . This equation

was used to compute 2
is for each ix replacing x ; and then using the general relationship that a weight is

inversely proportional to a variance, each iw was computed from 21i iw s= . [Note, in Smith & Draper

(1981, Table 2.1), the second weight was incorrectly shown as 2.18224]

12

To solve for the 2m = estimates of the parameters 0 1,β β , begin with observation equations having the

general form of (1)

 ˆi i iy v y+ =

where iv denotes the residual of the ith point and îy denotes the best estimate and rearrange these so that

unknown quantities are on the left-hand-side of the equals sign and known quantities on the right-hand side

 ˆi i iv y y− = −

Write the m observation equations and gather the terms in the matrix form + =v Bx f where B is an

(n,m) matrix of coefficients, x is a (m,1) vector of unknowns and f is an (n,1) vector of numeric terms

1 0 1 1 1 1 1 1

2 0 1 2 2 2 2 0 2

1

0 1

1

1
 or

1n n n n n n

v x y v x y

v x y v x y

v x y v x y

β β

β β β

β

β β

     − − = − − − −     
      − − = − − − −      ⇒ + = + =      =             − − = − − − −          

v Bx f
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Form the m normal equations

 () or T T= =B WB x B Wf Nx t

where T=N B WB is an (m,m) symmetric coefficient matrix and T=t B Wf is a (m,1) vector of numeric

terms, and W is an (n,n) diagonal matrix where the leading-diagonal elements are the weights

1 2 3, , , , nw w w w… associated with the measurements. In this example

1 1

2 1
2

1 2

1 2

0 0 1

1 1

7

1 0 0 1

0

0

88.553540 409.880783

409.880783 2263.4536 8

0 1

1 1 1

i i i

n i i i i

n n

w x

w w xw x

x x x w x w x

w x

x x x

   − −   
        − − − − −        = = =        − − −               − −      

− − −
=
− − −

∑ ∑
∑ ∑

N

t

⋯

⋯ ⋯

⋯ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯

1 1

2 2 398.701094

22 4

0 0

0

72.075 12

0

0

0

0

i i

n i i i

n n

w y

w y w y

w x y

w y

   −   
        −        = =                        −      

∑
∑

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

Solve the normal equations to obtain the (m,1) vector of least squares estimates x̂ of the unknowns x

using

 () 1
1ˆ T T

− −= =x B WB B Wf N t

where the superscript –1 denotes matrix inverse defined as 1− =NN I and I is the Identity matrix. In this

example 11 12

21 22

n n

n n

 
 =  
  

N with

()
22 121

2
21 11

11 22 12

6.9785 e-02 1.2637 e-021

1.2637 e-02 2.7302 e-03

n n

n nn n n

−
   − −   = =   − −   −    

N and the

solutions for 0 1

1

6.9785 e-02 1.2637 e-02 398.701094 0.889131
ˆ

1.2637 e-02 2.7302 e-03 2272.075412 1.164819

β

β
−

       − −       = = = =       −              
x N t

It is quite common in the literature to show the normal equations for linear regression in the following form

() ()
() ()

0 1

2
0 1

i i i i i

i i i i i i i

w w x w y

w x w x w x y

β β

β β

+ =

+ =
∑ ∑ ∑
∑ ∑ ∑

 (16)

and solutions for the parameters 0 1,β β as

13

() ()

2

0 12 22 2

i i i i i i i i i i i i i i i i i

i i i i i i i i i i

w x w y w x w x y w w x y w x w y

w w x w x w w x w x
β β

− −
= =

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑

 (17)

The estimate of the variance factor is obtained from (13) and in this example

 2
0

ˆ 2334.719471 2292.058377 42.661094
ˆ 1.292760

33 33

T T T

m n r
σ

− −
= = = = =

−
v Wv f Wf x t

and the estimates of the variances and covariances of the parameters can be obtained from (15) and the

definition 2
0xx xxσ= QΣ to give, in this example

 0 10

0 1 1

2

2 1
02

6.9785 e-02 1.2637 e-02 0.090215 0.016337
1.292760

1.2637 e-02 2.7302 e-03 0.016337 0.003529xx

β ββ

β β β

σ σ
σ

σ σ

−
     − −     = = = =     − −         

NΣ

and the estimated standard deviations of the parameters are:
0 1

0.3004 and 0.0594β βσ σ= =

The regression line in this example has the equation ˆ 0.8891 1.1648y x= − + and is shown in Figure 4.

Figure 4. X,Y scatterplot with regression line ˆ 0.8891 1.1648y x= − + .

Data from Draper & Smith (1981, Table 2.1)

The Least Squares Estimate is the Best Linear Unbiased Estimate (BLUE)

The least squares estimate x̂ has certain useful statistical properties.

Firstly, it is unbiased which means that the expected value of the estimate is the true value which can be

expressed as

 { }ˆE =x x (18)

{ }.E denotes expectation and the expectation of a random variable X is defined as the average value Xµ of

the variable over all possible values.

14

In the case of a continuous random variable { } ()X XE X x f x dxµ

+∞

−∞

= = ∫ where the random variable X

takes the value x and ()Xf x is the probability density function.

In the case of a discrete random variable { } ()
1

N

X k k
k

E X x P xµ
=

= = ∑ where ()kP x is the probability. For

N possible values kx of the random variable X, each having equal probability () 1kP x N= (which is a

constant), then the expectation { }
1

1
N

X k
k

E X x
N

µ
=

= = ∑ .

Following Cross (1994, Section 6), to prove that x̂ is an unbiased estimate of the true (but unknown) value

x consider equations (1) and (2) and the related matrix expressions ˆ+ =v Bx f and = +f Bx e where

= −f d l and e is a vector of random errors drawn from a population whose mean value { }e Eµ = =e 0 .

Equating these expressions gives

 ˆ+ = = − +v Bx f e Bx (19)

With expectations { }E =e 0 , { }E =x x and using the rules of expectations4 (noting that B is a matrix of

constants) then

{ } { }
{ } { }
{ } { }

E E

E E

E E

= − +

= − +
= − +

=

f e Bx

e Bx

e B x

Bx (20)

Now, using (10) and (8) () 1
ˆ T T

−
=x B WB B Wf and

 { } (){ } () { }
1 1

ˆ T T T TE E E
− −

= =x B WB B Wf B WB B W f

and using (20)

 { } () 1
ˆ T TE

−
= =x B WB B WBx x (21)

since () 1
T T

−
=B WB B WB I . Thus { }ˆE =x x and the least squares estimate x̂ is an unbiased estimate of

x.

The second useful property of least squares is that the estimate x̂ is the ‘best’ in the sense that of all the

possible estimates it is the one with the ‘minimum’ variance matrix and re-stating the previous result (15)

 1
ˆˆxx

−=Q N (22)

remembering that the cofactor matrix ˆˆxxQ contains estimates of the variances and covariances of the

elements of the least squares estimates x̂ and 1−N is the inverse of the coefficient matrix of the normal

equations (10).

4 If a,b are constants then { }E a a= and { } { } { } { }E aX b E aX E b aE X b+ = + = + . If A,b are

matrices/vectors of constants then { } { }E E+ = +Ax b A x b

15

The trace of ˆˆxxQ denoted ()ˆˆtr xxQ is the sum of the elements along the leading diagonal, and, for all the

possible estimates (each with their own variance matrix) the minimum variance matrix is the one with the

smallest trace. [Note that ()tr A is only defined for square matrices A]

Now to show that the least squares estimate x̂ is the ‘best’, i.e., ()ˆˆtr xxQ is the minimum then (following

Cross 1994) consider an unbiased estimate ′x obtained from a set of linear equations

 ′ =x Hf (23)

where f is given in (19) and H is a (),u n coefficient matrix (a linear transformation) and

 { } { } { }E E E′ = =x Hf H f (24)

Now { }E =f Bx is given in (20) and if ′x is unbiased then { }E ′ =x x and (24) becomes

 { }E ′ = =x HBx x (25)

and the necessary condition for (25) is that

 =HB I (26)

Applying the rule for propagation of variances to (23) gives T
x x ff′ ′ =Q HQ H and since ff =Q Q from (14)

and noting that 1−=Q W is a diagonal matrix of positive elements then

 T
x x′ ′ =Q HQH (27)

Hence the problem is to find the linear transformation H which satisfies (26) whilst minimizing the trace of

THQH , i.e. we require

 ()tr minimumT ⇒HQH

subject to

 − =HB I 0

To achieve this (minimise a function subject to conditions) a mathematical optimization technique known as

the method of Lagrange multipliers (Lagrange 1788, Vol. 1, Sect IV) is used where the function to be

optimized is the Lagrangian L

 () ()tr 2T TL = + −HQH k HB I (28)

where k is a (),1m vector of Lagrange multipliers and the 2 is inserted as a convenience, noting that

()T −k HB I a row-vector containing m zeros. If K is a (),m m matrix whose leading diagonal is the

elements of k then () ()()trT − = −k HB I HB I K and (28) becomes

() ()()
() () ()

tr tr 2

tr 2 tr 2 tr

T

T

L = + −

= + −

HQH HB I K

HQH HBK IK (29)

L will be an optimum value when the partial derivatives of L with respect to the elements of H are zero, i.e.,

when

 2 2 T TL∂
= + =

∂
HQ K B 0

H
 (30)

16

And this optimum value will be a minimum since
2

2
2

L∂
= >

∂
Q 0

H

Note here that two rules of matrix differentiation of traces have been employed (see for example Peterson &

Pederson 2012):

• ()tr T T∂
= +

∂
ABA AB AB

A
 (i)

• ()tr T∂
=

∂
AB B

A
 (ii)

 Now since Q is diagonal (and symmetric), then using (i) gives ()tr 2T T∂
= + =

∂
HQH HQ HQ HQ

H

and using (ii) gives () ()tr
T T T∂

= =
∂

HBK BK K B
H

Cancelling the 2’s in (30) and rearranging gives

 T T= −HQ K B

and post-multiplying both sides of the equation by 1− =Q W (and noting 1− =QQ I) gives

 T T= −H K B W (31)

Post-multiplying both sides of (31) by B gives T T= −HB K B WB but from (26) =HB I hence

T T= −I K B WB which by post-multiplication by () 1
T

−
B WB yields

 () 1
T T

−
= −B WB K (32)

Substituting this result into (31) gives an expression for the linear transformation H as

 () 1
T T

−
=H B WB B W (33)

Now, from (23) ′ =x Hf so post-multiplying both sides of (33) with the vector of numeric terms f gives

 () 1
T T

−
′ =x B WB B Wf (34)

And ′x is the estimate of x that has a cofactor matrix Q with minimum trace.

Comparing equations (34) with equations (10) and (8) we see ′x is identical to the least squares estimate x̂

and we have proved that the least squares estimate has a covariance matrix with smaller trace than any

other linear unbiased estimate (Cross 1994).

The Least Squares Estimate is the Maximum Likelihood Estimate (MLE)

Least squares theory does not require a specified distribution of random errors (or residuals) although most of

the usual statistical testing associated with the assessment of results assumes that the random errors (or

residuals) are from a multinormal distribution of random vectors with a probability density function (Mikhail

1976)

 () ()
()

() ()1
1 2 2

1 1
, , , exp

22

T

n n
f f

π

−
      = = × − − −        

X X x xx x x x x x… µ Σ µ

Σ

 (35)

with mean vector ()E=x xµ and variance matrix Σ . In the case of a single vector of normally distributed

random variables (35) has the familiar form (see Appendix B)

17

 ()

2

1
21

2

x

x

x

X

x

f x e

µ

σ

σ π

 −  −    = (36)

with mean xµ and variance 2
xσ .

For the case of a least squares estimate yielding residuals v with ()E= =
v

v 0µ that are assumed to have a

multinormal distribution then (35) can be expressed as

 ()
()

()1
21

2

1 1
exp

22

T
T

n
f C e

π

−− 
 = − =  

v Wv

V
v v Q v

Q

 (37)

where Q is the cofactor matrix containing estimates of the variances of the measurements and the weight

matrix 1−=W Q . Minimizing the sum of the weighted squares of the residuals, i.e., minimumT ⇒v Wv ,

has the effect of maximizing ()fV v which is equivalent to yielding a maximum likelihood estimation that is

explained below (Mikhail 1976).

Suppose that parameters 1 2, , , mp p p… are to be estimated from a sample 1 2, , , nx x x… of random variables

ix that are considered to be independent and have the same probability density function ()Xf x . The

sample vector ()1 2, , , nx x x… has the joint probability density function

() () () ()

()

1 2 1 2 1 1 2 1 1

1

1

, , , ; , , , ; , , ; , , ; , ,

; , ,

n m m m n m

n

i m

i

L x x x p p p f x p p f x p p f x p p

f x p p
=

= × × ×

=∏

… … … … ⋯ …

… (38)

Here we are extending a statistical rule for two independent continuous random variables x and y that states

that the joint probability density function (),f x y is the product of their marginal distributions ()g x and

()h y . The density functions ()if x are functions of the unknown parameters 1 2, , , mp p p… that are

themselves related to the sample values (), ,i i i np g x x= … . The Maximum Likelihood Estimates îp are

those that maximize the joint probability density L. This leads to the system

 ()0 or ln 0
i i

L
L

p p

∂ ∂
= =

∂ ∂
 (39)

since ln is a monotone increasing function.

Example. Maximum Likelihood Estimate of Linear Regression Parameters

Consider a simple linear regression problem of fitting the line 0 1y xβ β= + through a set of data points

(),i ix y 1,2, ,i n= … where the x-values are considered error-free and the y-values are subject to error. The

Maximum Likelihood Estimates (MLE) of the parameters 0 1,β β can be determined in the following manner.

First we assume that the residuals ˆi i iv y y= − where îy estimates, are normally distributed with a mean

0vµ = and a variance of 2σ , i.e., ()20,v N σ∼ . The probability density function of iv is

 ()
() ()2 2

2 0 1

2 22

ˆ

2 221 1 1

2 2 2

i i i i
i

y y x yv

V if v e e e

β β

σ σσ

σ π σ π σ π

     − − −       − −   −               = = =

Then, the likelihood function L is

18

()
() () ()

()

()

2 2 2

0 1 1 1 0 1 2 2 0 1

2 2 2

21
0 122 1

1
2

2 2 2

1 2

2

1 1 1
, , ,

2 2 2

1

2

n n

n

i i
i

x y x y x y

V n

x y

n

L f v v v e e e

e σ

β β β β β β

σ σ σ

β β

σ π σ π σ π

πσ

=

         − − − − − −        − − −                     

− − −

= = × × ×

∑
=

… ⋯

And the natural logarithm of the likelihood function is

 () () ()22
0 12

1

1
ln ln 2 ln

2 2 2

n

i i
i

n n
Q L x yπ σ β β

σ =

= = − − − − −∑

The likelihood function L and its logarithm lnQ L= are both functions of the parameters 0 1,β β and the

variance of the assumed normal distribution and optimizing L, which is the same as optimizing Q, is

achieved by setting the partial derivatives equal to zero, i.e.,

()

()(){ }

()

0 12
10

0 12
11

2

0 12 2 4
1

1
0

1
0

1
0

2 2

n

i i
i
n

i i i
i

n

i i
i

Q
x y

Q
x y x

Q n
x y

β β
β σ

β β
β σ

β β
σ σ σ

=

=

=

∂
= − + − =

∂

∂
= − + − =

∂

∂
= − + + − =

∂

∑

∑

∑

 (40)

And this optimum will be a maximum if

2
2 2 2 2 2

2 2 2 2
0 10 1 0 1

0, 0 and 0
Q Q Q Q Q

β ββ β β β

    ∂ ∂ ∂ ∂ ∂      < < −  >         ∂ ∂ ∂ ∂ ∂ ∂  
 (41)

Now, since
2

2 2
0

Q n

β σ

∂
= −

∂
,

2
2

2 2
1

1
i

Q
x

β σ

∂
= −

∂
∑ and

2

2
0 1

1
i

Q
x

β β σ

∂
= −

∂ ∂ ∑ – noting that the following

summation notations are equivalent: 1 2 3
1

n

k k k n
k k

x x x x x x x
=

= = = + + + +∑ ∑ ∑ ⋯ – then

 (){ }
2 22 2 2

22 2

2 2 2 2 2 4
0 10 1

1 1 1
i i i i

q q Q n
x x n x x

β ββ β σ σ σ σ

         ∂ ∂ ∂            −  = −  −  − −  = −                     ∂ ∂ ∂ ∂  
∑ ∑ ∑ ∑ (42)

And with ()22 1
ix

n
σ µ= −∑ and

1
ix

n
µ = ∑ we may write

 ()2 2 2 2 2 2 2 2 2 21 1 1 1 1 1
2 2 2i i i i i ix x x x x x

m n n n n n
σ µ µ µ µ µ µ µ= − + = − + = − + = −∑ ∑ ∑ ∑ ∑ ∑

And since ()22 2
in xµ = ∑ then ()22 2 2

i in n x xσ = −∑ ∑ and (42) becomes

2
2 2 2 2

2 2 2
0 10 1

Q Q Q n

β ββ β σ

    ∂ ∂ ∂       −  =         ∂ ∂ ∂ ∂  

So the conditions of (41) are satisfied and the optimum will be a maximum.

Solving the first two of the three equations in (40) gives

()

()(){ }
0 1

0 1

0

0
i i

i i i

x y

x y x

β β

β β

+ − =
+ − =
∑

∑

19

Which can be expanded and rearranged as

()

() ()
0 1

2
0 1

i i

i i i i

n x y

x x x y

β β

β β

+ =

+ =
∑ ∑

∑ ∑ ∑

giving solutions for the parameters 0 1,β β as

() ()

2

0 12 22 2

i i i i i i i i i

i i i i

x y x x y n x y x y

n x x n x x
β β

− −
= =

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

 (43)

Comparing (43) with (17) shows that the maximum likelihood estimates of the parameters 0 1,β β are

identical to the least squares estimates if the weights iw are all unity.

M-Estimation

An estimator is a rule (a set of equations perhaps) for calculating an estimate of a quantity from observed

data. An estimator is efficient if its estimates are calculated in some ‘best possible’ manner and it is

unbiased if the difference between the expected value of the estimate and its true value is zero. The Least

Squares estimator is based on the rule that the sum of weighted squared-residuals is to be a minimum, i.e.,

2

1

minimum
n

i i
i

w vϕ
=

= ⇒∑ and the Maximum Likelihood Estimator is based on the rule that the likelihood

function L is maximized, i.e.,

()

()21
22 1

1
2

ˆ

2

1
maximum

2

n

i i
i

y y

n
L e σ

πσ

=
− −∑

= ⇒ if the estimates are derived from

observations (and hence residuals) drawn from a normal distribution with mean zero and variance 2σ .

M-Estimators, originally proposed by Huber (1964) are a group of estimators that are outcomes from

optimizing objective functions ϕ having the general form

 ()
1

n

i
i

vϕ ρ
=

= ∑ (44)

()ivρ is an arbitrary function of the residuals iv having certain desirable characteristics and iv are

functions of measurements and parameters x

 ˆ T
i i i i iv y y y= − = −b x (45)

The estimates îy are functions of the estimates of parameters x (to be determined) and can be expressed as

the vector product Tb x . For example, if 0 1î iy xβ β= + then 0

1

ˆ 1 T
i i iy x

β

β

 
   = =       

b x where
1

i
ix

 
 =  
  

b is a

vector of coefficients, T
ib denotes the transpose and 0

1

β

β

 
 =  
  

x is the vector of parameters

The ‘M’ in M-estimation can be associated with the Minimization of the objective function that is achieved

by partial differentiation with respect to parameters x and then setting the partial derivatives to zero, i.e.,

 ()
1

n

i
i

d d
v

d d

ϕ
ρ

=

= =∑ 0
x x

 (46)

20

These are known as normal equations and there will be one equation for each estimated parameter in x̂ .

Solving these equations for x will optimize ϕ yielding either a maximum or a minimum value. If
2

2

d

d

ϕ
> 0

x

then this optimum will have a minimum value. This is invariably the case when M-estimation is used in

regression analysis.

A reasonable ().ρ should have the following properties

• Always non-negative, () 0vρ ≥

• Equal to zero when its argument is zero, ()0 0ρ =

• Symmetric, () ()v vρ ρ= −

• Monotone in iv () ()1 1for 0 k k k kv v v vρ ρ+ +< < ⇒ ≤

• Differentiable

For example, () 2v wvρ = satisfies these requirements and () 2

1 1

minimum
n n

i i i
i i

v w vϕ ρ
= =

= = ⇒∑ ∑ is the least

squares criteria for independent measurements each having a numeric weight iw . In least squares estimation

the weights are usually related to the precision of the measurements, but they could also be assigned

arbitrarily or by some rule.

In M-estimation weights are obtained from functions of the residuals v and the weight function is defined as

 ()
()v

w v
v

ψ
= (47)

where ()vψ is the influence function defined as

 () ()d
v v

dv
ψ ρ= (48)

The inter-relationship between the three functions (-, - and -functionswρ ψ) would allow the -functionρ to be

determined from the -functionw by first determining the -functionψ from (47) as () ()v v w vψ = and then

the -functionρ from (48) as () ()v v dvρ ψ= ∫ . Alternatively, the -functionψ could be defined and then

() ()v v dvρ ψ= ∫ and () ()w v v vψ= .

Choosing certain weight functions can reduce the effects of ‘outliers’ in an estimation process where an

outlier is usually regarded as a data element having a larger than usual residual. Estimation processes that

are not affected (or minimally affected) by outliers are called robust and this is a desirable feature in any

estimation process.

M-Estimation with Tukey’s bisquare weight function

A weighting function, commonly known as Tukey’s bisquare weight function or biweight was introduced by

Beaton & Tukey (1974) as

“… a simple robustifying (weight) function of the form

 () ()221 for 1

0 for 1

u u
w u

u

 − ≤=  >
 (49)

which we will tag ‘biweight’, the ‘bi’ referring to the outer exponent …”

21

In (49) u is a scaled residual defined as

ˆi i i

i

v y y
u

k cS

−
= = (50)

where k cS= and S is a measure of scale to be calculated from the data and c is a tuning constant. [Beaton

& Tukey 1974, p. 151 actually define i
i

y T
u

cS

−
= where T is their M-estimate of location and we have used

îy . Since 2u is always used this difference in sign is immaterial. The tuning constant is discussed in a

following section.]

Now using (47) gives () ()v v w vψ = hence

 () ()
2

2
2

21 1 for

0 for

v
v u v v k

v k

v k

ψ

       − = −  ≤ =       >

 (51)

Now

2 3
2 22

1 1
6

v k v
v dv

k k

             −  = − −                  
∫ using

2

1
v

s
k

 = −    
,

2

2v
ds dv

k
= − and

2

2

k
vdv ds= − so that

 ()

3
2

2 1 1 for
0

6
1 for

v
k v k

v k

v k

ρ

       − −  ≤ ≤ =       >

 (52)

To see how M-estimation using Tukey’s bisquare weight function might work in practice, consider the simple

regression problem of fitting the straight line 0 1y xβ β= + through a set of n data points (),i ix y

1,2, ,i n= … . The x-values are considered to be error free and the y-values are measurements subject to

error.

The M-estimator (a set of equations) will arise from optimizing the objective function ϕ , i.e.,

 ()
1

optimum
n

i
i

vϕ ρ
=

= ⇒∑

where ()vρ is given by (52) and k cS= is a constant. Now with ˆi i iv y y= − and 0 1î iy xβ β= + the

objective function ϕ is

()

() () ()

() () ()

2 4 62

1 1

2
2 4 6

2 4 6
1

2
2 4 6

0 1 0 1 0 12 4 6

3 3 3
6

3 3 1
ˆ ˆ ˆ

6

3 3 1

6

n n
i i i

i
i i

n

i i i i i i
i

i i i i i i

v v vk
v

k k k

k
y y y y y y

k k k

k
x y x y x y

k k k

ϕ ρ

β β β β β β

= =

=

               = = − +                    
   = − − − + −    
= + − − + − + + −

∑ ∑

∑

1

n

i=


∑

Now ϕ is a function of the estimated parameters 0 1,β β , i.e., ()0 1,ϕ ϕ β β= and the function will be an

optimum (either a minimum or a maximum value) when the partial derivatives
0

ϕ

β

∂
∂

 and
1

ϕ

β

∂
∂

 are both

equated to zero where

22

() () ()

() () ()

() () ()

2
3 5

0 1 0 1 0 12 4 6
10

3 5

0 1 0 1 0 12 4
1

2 4

0 1 0 1 0 12 4
1

0 1

6 12 6
ˆ 6

2 1

2 1
1

n

i i i i i i
i

n

i i i i i i
i
n

i i i i i i
i

k
x y x y x y

k k k

x y x y x y
k k

x y x y x y
k k

ϕ
β β β β β β

β

β β β β β β

β β β β β β

β β

=

=

=

 ∂   = + − − + − + + −  ∂   
   = + − − + − + + −    

   = + − − + − + + −    

= +

∑

∑

∑

() ()
2

2

0 12
1

1
1

n

i i i i
i

x y x y
k
β β

=

 − − + −    ∑

and

()() () () () ()

()() ()

2
3 5

0 1 0 1 0 12 4 6
11

2
2

0 1 0 12
1

6 12 6
ˆ 6

1
1

n

i i i i i i i i i
i

n

i i i i i
i

k
x y x x y x x y x

k k k

x y x x y
k

ϕ
β β β β β β

β

β β β β

=

=

 ∂   = + − − + − + + −  ∂   
 = + − − + −    

∑

∑

The 2nd term in the summation in both partial derivatives is ()
2

2

0 12

1
1 i ix y

k
β β

  − + −    
 and this is the

weight iw from (49) where

 () () ()
2

2 2
2 22

0 12

1
1 1 1i

i i i i i

v
w w v u x y

k k
β β

       = = − = − = − + −          
 (53)

And the partial derivatives become

 () ()0 1 0 1
1 10 1

 and
n n

i i i i i i i
i i

w x y w x x y
ϕ ϕ

β β β β
β β= =

∂ ∂
= + − = + −

∂ ∂∑ ∑

The weights iw are positive numeric values less than or equal to 1, or they are zero and even though they

are functions of 0 1,β β they can be considered as constants for any particular values of 0 1,β β and the second

derivatives become
2 2

2

2 2
1 10 1

0 and 0
n n

i i i
i i

w w x
ϕ ϕ

β β= =

∂ ∂
= > = >

∂ ∂
∑ ∑ and the optimum value of ϕ will be a

minimum when the partial derivatives are equated to zero. This gives rise to two normal equations

()

()

0 1
1

0 1
1

0

0

n

i i i
i
n

i i i i
i

w x y

w x x y

β β

β β

=

=

+ − =

+ − =

∑

∑

Or by re-arrangement and noting that 1 2 3
1

n

k k k n
k k

v v v v v v v
=

= = = + + + +∑ ∑ ∑ ⋯ are equivalent

() ()
() ()

0 1

2
0 1

i i i i i

i i i i i i i

w w x w y

w x w x w x y

β β

β β

+ =

+ =
∑ ∑ ∑
∑ ∑ ∑

 (54)

With solutions

() ()

2

0 12 22 2

i i i i i i i i i i i i i i i i i

i i i i i i i i i i

w x w y w x w x y w w x y w x w y

w w x w x w w x w x
β β

− −
= =

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑

 (55)

23

The normal equations (54) and solutions (55) are identical in form to (16) and (17) that are the least squares

normal equations and solutions for the linear regression example in Figure 3. But there is one significant

difference: the weights iw in M-estimation are functions of the ‘unknown’ parameter estimates 0 1,β β . This

means that the solution of equations (54) must be an iterative process where some approximate values of the

parameters, say
() ()0 0

0 1,β β are used to calculate a set of initial weights, say
()1
iw that are computed from (53)

and then are used in (54) to obtain a first solution for the parameters, say
() ()1 1

0 1,β β . And these are used to

calculate the next set of weights
()2
iw and then a second solution

() ()2 2

0 1,β β . This iterative process continues

until the differences between
()j
iw and

()1j

iw
+

 are negligible and this solution process is known as Iteratively

Reweighted Least Squares (IRLS).

Tukey’s bisquare weight function with Median Absolute Deviation (MAD)

In the calculation of the weights iw using Tukey’s bisquare weight function (49) the factor k cS= is

required where c is tuning constant (see below) and S is a measure of scale (or variability of the data)

computed from the data. For a sample of size n, measures of scale S of the residuals iv could be the sample

standard deviation vs computed from the sample variance ()22

1

1

1

n

v i
i

s v v
n =

= −
− ∑ where vs is the positive

square root of 2
vs and

1

1
n

i
i

v v
n =

= ∑ is the sample mean which is a measure of location (or centre) of the

sample. But the sample mean and variance (and hence the sample standard deviation) are known to suffer

from the effects of outliers, since large residuals affect the mean v and also the squared differences ()2iv v−

in the calculation of the variance.

A more robust measure of the location of a sample is the median M and a more robust measure of the scale is

the Median Absolute Deviation (MAD) that is defined as the median of the absolute deviations from the

sample’s median M, i.e.,

 { } { }MAD median where mediani iv M M v= − = (56)

where the braces { } indicate a finite sample of n values.

The median M of a sample { }ix of n values ordered from smallest to largest so that 1 2 nx x x< < <… is

 { } ()
1

1
12

if 2 1 is odd

if 2 is is even

k
i

k k

x n k
M x

x x n k

+

+

 = +=  + =
 (57)

In either case there will be the same number values that are larger than or equal to the median, and smaller

than or equal to the median M.

For example, suppose iv is a set of 1,2, ,i n= … values and for 7n = , { }2 7 4 16 1 0 8iv = − .

The set is ordered from smallest to largest as { }2 0 1 4 7 8 16
↑

− and since n is odd, the median M is

the middle value indicated with ↑ , ()1 2 3k n= − = and 1 4kM v += = . There are 3 values less than M

(the values to the left of the 4th value) and 3 values greater than M (the values to the right of the 4th value).

Now suppose the set { }2 7 2 16 1 0 8 4 4 5iv = − − has 10n = values that is ordered from

smallest to largest as { }5 2 0 1 2 4 4 7 8 16
↑ ↑

− − , and since n is even, the median M is the average

24

of the two middle values and 2 5k n= = and ()1
12

3k kM v v += + = . There are 5 values less than the

median (the first 5 values) and 5 values greater than the median (the last 5 values).

It should be noted here that if X is a random variable that can take values n values 1 2, , , nx x x… having a

median M then the probability that any X is less than or equal to the median is exactly 1
2
 or

() 1
2

Pr X M≤ = and if X is a continuous random variable with probability density function ()Xf x and

cumulative distribution function ()XF x , so that () ()
x

X XF x f y dy

−∞

= ∫ , or () ()X X

d
F x f x

dx
= then the

median M is defined by the solution of the integral equation () () () 1
Pr

2

M

X XX M F M f x dx

−∞

≤ = = =∫ .

Appendix E shows how this result can be used to determine the value of a scale factor b that enables the

MAD to be used as a consistent estimator of the standard deviation σ of normally distributed data where

 ()ˆ MAD 1.4826 MADbσ = × ≈ (58)

The measure of scale S above and in (50) is often taken to be ()1.4826 MADS = .

The Tuning Constant in M-estimation

M-estimation is the outcome of optimizing the objective function ()
1

n

i
i

vϕ ρ
=

=∑ where ()ivρ is a function of

the residuals iv and is related to the influence function ()vψ and weight function ()w v by

() ()d
v v

dv
ψ ρ= and ()

()v
w v

v

ψ
= . The residuals iv are defined from the general relationship

measurement + residual = best estimate (or ˆi i iy v y+ =) giving ˆi i iv y y= − and a scaled residual

ˆi i i
i

v y y
u

k cS

−
= = where k cS= and S is a measure of scale computed from the residuals and c is a tuning

constant.

Now suppose that the residuals are each divided by S, computed from the sample, and these standardized

residuals are i
i

v
v

S
=ɶ and the scaled residuals i

i

v
u

c
=
ɶ

. For example, using Tukey’s bisquare weight function

 ()

2
2

1 for

0 for

v
v c

w v c

v c

      −  ≤ =       >

ɶ
ɶ

ɶ

ɶ

 (59)

the ψ and ρ functions are

 ()

2
2

1 for

0 for

v
v v c

v c

v c

ψ

       −  ≤ =       >

ɶ
ɶ ɶ

ɶ

ɶ

 (60)

 ()

3
2

2 1 1 for

6
1 for

v
c v c

v c

v c

ρ

       − −  ≤ =       >

ɶ
ɶ

ɶ

ɶ

 (61)

25

The M-estimator ()vψ ɶ , resulting from optimizing ()
1

n

i
i

vϕ ρ
=

=∑ , should be an unbiased estimator and its

efficiency can be defined as a ratio of the minimum possible variance of an unbiased estimator to the actual

variance of the estimator and it can be proved that this ratio is less than or equal to unity, i.e., for an

unbiased estimator θ̂ ,

 ()
ˆminimum possible variance of ˆ 1

ˆactual variance of
eff

θ
θ

θ
= ≤

The actual variance of θ̂ can only be determined if the probability distribution of the random variable, from

which the estimator is derived, is known. Hence the efficiency of an estimator is described as ‘relative to’ or

‘with respect to’ a particular distribution. The standard normal distribution is often assumed to be the

underlying probability distribution.

The efficiency of an estimator is often expressed as a percentage, e.g. if ()ˆ 0.95eff θ = then θ̂ has an

efficiency of 95% with respect to the standard normal distribution.

An equation for 95% efficiency of an M-estimator, assuming the residuals are from a standard normal

distribution, is given by Huber (1981) as

() ()

() ()

2

2

0.95

c

X

c

c

X

c

x f x dx

eff

x f x dx

ψ

ψ

−

−

 
 ′ 
 
 = ≈

  

∫

∫

 (62)

where ()0,1x N∼ are the random variables, ()Xf x is the pdf of the standard normal distribution, ()xψ is

the influence function for any M-estimator and () ()d
x x

dx
ψ ψ′ =

Equation (62) involving the tuning constant c as integration limits is solved numerically by Banas & Ligas

(2014) to obtain 4.685c = for the influence function for Tukey’s biweight (see (59) to (61) above with x

replacing vɶ). For example, with

 ()

2
2

1 for

0 for

x
x x c

x c

x c

ψ

       −  ≤ =       >

then

 ()

2 2

1 1 5 for

0 for

x x
x c

x c c

x c

ψ

               −  −  ≤          ′  =          >

26

And with ()
21

2
1

2

x

Xf x e
π

−= equation (62) can be (rather crudely) evaluated using the following function

eff written in GNU Octave5

function eff
for c = 4.68:0.005:4.70
 sumx = 0;

 sumy = 0;

 dx = 0.0005;
 root = sqrt(2*pi);

 for x = -c:dx:c

 fx = 1/root*exp(-x*x/2);
 u = x/c;

 u2 = u*u;

 px = x*(1-u2)^2;
 pdashx = (1-u2)*(1-5*u2);
 sumx = sumx + (pdashx*fx*dx);

 sumy = sumy + (px^2*fx*dx);

 end
 eff = sumx^2/sumy;

 fprintf(' c = %5.3f',c);
 fprintf('\n eff = %8.6f\n',eff);

end
endfunction

The results, shown in the Octave Command Window, are

>> eff
 c = 4.680

 eff = 0.949793

 c = 4.685
 eff = 0.949997

 c = 4.690
 eff = 0.950201
 c = 4.695

 eff = 0.950403

 c = 4.700

 eff = 0.950605
>>

The computed efficiency of 0.949997 for 4.685c = confirms the result of Banas & Ligas (2014) and others,

e.g. Hogg 1979 and Yohai 1987.

Another weighting function known as tricube is often used in M-estimation and also in Lowess where it is

used to determine the local weights for the q nearest neighbours. It has the general form

 () ()
3

3
1 for 1

0 for 1

x x
w x

x

 − ≤=  >

 (63)

Now suppose that x is replaced by the scaled standardized residuals
v

u
c

=
ɶ

 giving the tricube weight

function

5 GNU Octave is a high-level language, primarily intended for numerical computations. It provides a convenient

command line interface for solving linear and nonlinear problems numerically, and for performing other numerical

experiments using a language that is mostly compatible with Matlab. GNU Octave is freely redistributable software from

the Free Software Foundation.

27

 ()

3
3

1 for

0 for 1

v
v c

w v c

v

       − ≤  =       >

ɶ
ɶ

ɶ

ɶ

 (64)

Where i
i

v
v

S
=ɶ are standardised residuals and c is a tuning constant. The tricube -ψ and -ρ functions (the

influence and objective functions) are

 ()

3
3

1 for

0 for

v
v v c

v c

v c

ψ

        − ≤  =        >

ɶ
ɶ ɶ

ɶ

ɶ

 (65)

 ()

2 3 3 3

2 220 264 5 8 33 for

440
81 for

v v v v
v cc

v c c c c

v c

ρ

                                − + − ≤                 =                     >

ɶ ɶ ɶ ɶ
ɶ

ɶ

ɶ

 (66)

For the purposes of evaluating c using (62) ()xψ [obtained from (64) with x replacing vɶ] and its derivative

()xψ ′ are

 ()

3
3

1 for

0 for

x
x x c

x c

x c

ψ

        − ≤  =        >

 (67)

 ()

3 3 3

1 3 4 7 1 10 for

0 for

x x x
x c

x c c c

x c

ψ

                       − − − ≤          ′   =               >

 (68)

And using the function eff shown above (suitably modified for the tricube function) a value of 4.416c =

corresponds with the computed efficiency of 0.950019. This confirms the result of Banas & Ligas (2014) who

find 4.417c = .

Figure 5. Tukey’s bisquare -ρ , -ψ and -w functions

28

Figure 6. Tricube -ρ , -ψ and -w functions

Example. M-estimation using Tukey’s bisquare weighting function

Consider the simple regression problem of fitting the straight line 0 1y xβ β= + through a set of 24n =

data points (),i ix y 1,2, ,i m= … . The data, called here the Belgian Telephone Dataset, is taken from

the Belgian Statistical Survey (published by the Ministry of Economy) and consists of the number of

international telephone calls made from Belgium (in millions) over a 24-year period from 1950 to 1973 (both

inclusive). The dataset contains spurious results between 1964 and 1969 as a different recording system was

used which recorded the total number of minutes of calls made rather than simply the numbers of calls. The

years 1963 and 1970 are partially affected as well since the transition did not occur on the New Years’ day

exactly. This dataset was discussed in Rousseeuw and Leroy (1987, p. 26, Table 2) and has been used in

other publications on M-estimation.

Year

()ix

Number of

calls ()iy

Year

()ix

Number of

calls ()iy

Year

()ix

Number of

calls ()iy

1950 0.44 1958 1.06 1966 14.20

1951 0.46 1959 1.20 1967 15.90

1952 0.47 1960 1.35 1968 18.20

1953 0.59 1961 1.49 1969 21.20

1954 0.66 1962 1.61 1970 4.30

1955 0.73 1963 2.12 1971 2.40

1956 0.81 1964 11.90 1972 2.70

1957 0.88 1965 12.40 1973 2.90

Table 2. Belgium Telephone Dataset 1950-73. Number of international calls (millions)

29

Figure 7. Regression lines 0 1y xβ β= + for the Belgium Telephone Dataset.

 Dashed line: Least Squares (unit weights); solid line: M-estimate (Tukey’s

bisquare weighting function and Iteratively Reweighted Least Squares).

Using the data and assuming weights of unity for each yearly value, the parameters 0 1,β β of a regression line

0 1y xβ β= + are computed using Least Squares and shown as the dashed line in Figure 7 as

0ˆ .80000 0.504230 9y x+= − where Year 1950x = − . These are used as the initial values in an Iterative

Reweighted Least Squares solution for 0 1,β β where the weighting function is Tukey’s bisquare weight

function where the scale factor k cS= and the tuning constant 4.865c = , the scale parameter

MADS b= × with 1.4826b = . The MAD and weights are calculated from the residuals for each iteration.

The iterative process continues until the weights of successive iterations differ by an acceptably small

tolerance. In this example the tolerance was 1e 6− and convergence was achieved in 10 iterations with

4ˆ 0.25926 0.110004 xy += . The weights after convergence are shown in Table 3 and it can be noted that

the y-values for years 1964 to 1970 are zero and this corresponds with the information about the spurious

nature of the y-values for those years.

Year weight Year weight Year weight Year weight

1950 0.908147 1956 0.965900 1962 0.997291 1968 0

1951 0.976435 1957 0.936845 1963 0.537191 1969 0

1952 0.999752 1958 0.981974 1964 0 1970 0

1953 0.999998 1959 0.993012 1965 0 1971 0.919113

1954 0.995561 1960 0.999751 1966 0 1972 0.998774

1955 0.981980 1961 0.998768 1967 0 1973 0.965063

Table 3. Weights for the Belgium Telephone Dataset after 10 iterations

Yohai (1987, Table 2, Figure 1, p. 652) analyses the same data using the same weighting function (Tukey’s

bisquare weight function) but with a modified version of the iteratively reweighted least squares process used

here. His results, corrected to accord with the Year scale used here, are ˆ 0.26 0.11y x= +

The results for this example were obtained from a function M_estimate written in GNU Octave and shown in

Appendix F.

30

A More Detailed Explanation of Lowess

To give a more detailed explanation of Lowess, a data set from the NIST/SEMATECH6 e-Handbook of

Statistical Methods will be used. The data is shown in Table 4 and Figure 8 is a plot of the data showing a

trendline that is a non-robust Lowess smoothed curve.

 X Y

1 0.5578196 18.63654

2 2.0217271 103.49646

3 2.5773252 150.35391

4 3.4140288 190.51031

5 4.3014084 208.70115

6 4.7448394 213.71135

7 5.1073781 228.49353

 X Y

8 6.5411662 233.55387

9 6.7216176 234.55054

10 7.2600583 223.89225

11 8.1335874 227.68339

12 9.1224379 223.91982

13 11.9296663 168.01999

14 12.3797674 164.95750

 X Y

15 13.2728619 152.61107

16 14.2767453 160.78742

17 15.3731026 168.55567

18 15.6476637 152.42658

19 18.5605355 221.70702

20 18.5866354 222.69040

21 18.7572812 243.18828

Table 4. NIST data for Lowess smoothing

https://www.itl.nist.gov/div898/handbook/pmd/section1/dep/dep144.htm

Figure 8. Plot of NIST data for Lowess smoothing. The trendline is a non-robust Lowess smoothed curve.

In the NIST data example, there are 21n = (),x y data pairs ordered from smallest to largest x-value and it

is assumed that the x-values are error free and the y-values are measurements subject to error. In Figure 8

the trendline is a non-robust Lowess smoothed curve and this means that only local weights derived from a

6 This handbook is a joint production of The National Institute of Standards and Technology (NIST), an agency of the

US Department of Commerce, and SEMATECH (from Semiconductor Manufacturing Technology) a not-for-profit

consortium of major US semiconductor manufacturers founded in 1987 and now merged with State University of New

York Polytechnic Institute (SUNY Poly)

31

tricube weight function are used and there is no robust weighting scheme employed as in M-estimation. This

non-robust Lowess smoothing is also known as Loess (locally weighted regression). We will describe this

process first and then show how the robust weighting schemes of M-estimation are used.

Determining the group of nearest neighbours

The first part of the computational process is to determine the number of points that constitute the group of

nearest neighbours q of the smoothing point (),s sx y remembering that the smoothing point is a nearest

neighbour of itself and ()floorq f n= × where 0 1f< ≤ defines the proportion of points used in the

smoothing, or the amount of smoothing and n is the number of points in the data set. In the NIST example

0.35f = and ()floor 0.35 21 7q = × = . A value f in the range of 0.2 to 0.8 usually gives an acceptably

smooth trendline.

Now, having determined q, the nearest neighbours of the smoothing point need to be identified in the data

set. The following algorithm – expressed in GNU Octave code – defines the initial location of a window

containing q points and then advances this window through the data set (from left to right) as required and

prints the smoothing point index and the index numbers of the left and right boundaries of the window.

Nleft = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning

Nright = q; Nright = q is index of the right edge of window at beginning

i = 1 i is the index of the first smoothing point
do

 while (Nright < N) N is the number of points in the data set

 d1 = X(i) – X(Nleft); d1 is distance to left edge of window

 d2 = X(Nright+1) – X(i); d2 is distance to right edge of window
 if (d1 <= d2)

 break don't move the window; exit while loop
 endif

 Nleft = Nleft+1; move the window one place to the right and repeat
 Nright = Nright+1;
 endwhile

 last = i set index of last point
 if (i == 1)
 fprintf('\n nearest neighbour window');
 fprintf('\n smoothing point left edge right edge');

 else

 fprintf('\n %2d %2d %2d',i,Nleft,Nright);
 endif

 i = max(last+1,i-1); set index of new smoothing point
until (last >= N)

The printed output of the Octave code above is

 nearest neighbour window
 smooth point left edge right edge

 1 1 7

 2 1 7
 3 1 7

 4 1 7

 5 2 8
 6 3 9
 7 4 10

 8 5 11

 9 6 12
 10 6 12

 nearest neighbour window
 smooth point left edge right edge

 11 6 12

 12 8 14
 13 12 18

 14 12 18

 15 12 18
 16 13 19
 17 14 20

 18 15 21

 19 15 21
 20 15 21
 21 15 21

32

We can see from the printed output that the smoothing point index increases uniformly from 1 to 21 but the

indices for the left and right edges of the window do not. The key to their movement is the x-distances d1

and d2 where d1 is the distance from the smoothing point to the left edge of the window and d2 is the

distance from the smoothing point to the next data point past the right edge of the window. When 1 2d d>

the window is advanced otherwise it remains in the same place.

1 2 3 4 5 6 7 89 10 11 12 13 14 15 16
17

18 19
20

21

window for (12)

window for (13)

d1 d2

Figure 9. Schematic diagram of the x-location of the 21 NIST data. The windows for smoothing points 12

and 13 are shown with distances d1 and d2 related to smoothing point 12.

Assigning the Local Weights

With the smoothing point index set and the left and right window boundary indices determined the x-

distances from the smoothing point to each of the q nearest neighbours are calculated and local weights

determined from the tricube weight function

 ()

3
3

1 for

0 for

j
j

j

j

r
r h

w r h

r h

       − <   =        ≥

 (69)

where 0 1jw≤ ≤ for 1,2, ,j q= … is a weight, jr is the absolute value of the x-distance from the smoothing

point to the jth nearest neighbour and ()max jh r= . The tricube weight function is a symmetric bell-shaped

curve (see Figure 6) with 0 1jw< < for jr h< and 0jw = for jr h≥ with a maximum 1jw = at the

smoothing point where 0jr = .

The following algorithm – expressed in GNU Octave code – defines the initial location of a window

containing q points and then advances this window through the data set (from left to right) as required and

determines the local weights using the tricube weight function (69) and prints results for the q nearest

neighbours of the smoothing point. (The code follows after the data has been read from a text file and the

number of data pairs N determined; see for example, the Octave program M_estimate in Appendix F.)

Nleft = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning

Nright = q; Nright = q is index of the right edge of window at beginning

i = 1 i is the index of the first smoothing point
do

 while (Nright < N) N is the number of points in the data set

 d1 = X(i) – X(Nleft); d1 is distance to left edge of window

 d2 = X(Nright+1) – X(i); d2 is distance to right edge of window

 break don't move the window; exit while loop
 endif

 Nleft = Nleft+1; move the window one place to the right and repeat
 Nright = Nright+1;
 endwhile

 Xs = X(i); Xs = X(i) is the smoothing point

 h = max(Xs-X(Nleft), X(Nright)-Xs); maximum distance from smoothing point

33

 w = zeros(N,1); zero the vector of weights
 fprintf('\n\n X(%2d) X Y r r/h weight',i);

 for j = Nleft:1:Nright

 r = abs(X(j)-Xs); distance from smoothing point to a nearest neighbour

 w(j) = (1-(r/h)^3)^3; Tricube weight function
 if (r == 0)

 fprintf('\n%12.7f %12.7f %9.7f %9.7f %9.7f %9.7f',Xs,X(j),Y(j),r,r/h,w(j));
 else
 fprintf('\n %12.7f %9.7f %9.7f %9.7f %9.7f',X(j),Y(j),r,r/h,w(j));

 endif

 endfor

 last = i; set index of last point

 i = max(last+1,i-1); set index of new smoothing point
until (last >= N)

fprintf('\n\n');
endfunction

The printed output for smoothing points 1, 2, 3, 12, 13, 20 and 21 of the NIST data are shown below

 X(1) X Y r r/h weight
 0.5578196 0.5578196 18.6365400 0.0000000 0.0000000 1.0000000

 2.0217271 103.4964600 1.4639075 0.3217691 0.9033491
 2.5773252 150.3539100 2.0195056 0.4438905 0.7598897

 3.4140288 190.5103100 2.8562092 0.6277992 0.4262171

 4.3014084 208.7011500 3.7435888 0.8228466 0.0868617
 4.7448394 213.7113500 4.1870198 0.9203134 0.0107231
 5.1073781 228.4935300 4.5495585 1.0000000 0.0000000

 X(2) X Y r r/h weight

 0.5578196 18.6365400 1.4639075 0.4744242 0.7126422

 2.0217271 2.0217271 103.4964600 0.0000000 0.0000000 1.0000000
 2.5773252 150.3539100 0.5555981 0.1800586 0.9825889

 3.4140288 190.5103100 1.3923017 0.4512181 0.7489423
 4.3014084 208.7011500 2.2796813 0.7388008 0.2125014

 4.7448394 213.7113500 2.7231123 0.8825082 0.0305716
 5.1073781 228.4935300 3.0856510 1.0000000 0.0000000

 X(3) X Y r r/h weight

 0.5578196 18.6365400 2.0195056 0.7982069 0.1186857
 2.0217271 103.4964600 0.5555981 0.2195994 0.9685654

 2.5773252 2.5773252 150.3539100 0.0000000 0.0000000 1.0000000
 3.4140288 190.5103100 0.8367036 0.3307060 0.8953727

 4.3014084 208.7011500 1.7240832 0.6814416 0.3194020

 4.7448394 213.7113500 2.1675142 0.8567071 0.0511567

 5.1073781 228.4935300 2.5300529 1.0000000 0.0000000
 :
 :

 X(12) X Y r r/h weight

 6.5411662 233.5538700 2.5812717 0.7924503 0.1267777

 6.7216176 234.5505400 2.4008203 0.7370517 0.2155685
 7.2600583 223.8922500 1.8623796 0.5717504 0.5375574

 8.1335874 227.6833900 0.9888505 0.3035771 0.9183942
 9.1224379 9.1224379 223.9198200 0.0000000 0.0000000 1.0000000

 11.9296663 168.0199900 2.8072284 0.8618190 0.0466169
 12.3797674 164.9575000 3.2573295 1.0000000 0.0000000

 X(13) X Y r r/h weight

 9.1224379 223.9198200 2.8072284 0.7550378 0.1847708

 11.9296663 11.9296663 168.0199900 0.0000000 0.0000000 1.0000000
 12.3797674 164.9575000 0.4501011 0.1210601 0.9946868
 13.2728619 152.6110700 1.3431956 0.3612686 0.8651119

 14.2767453 160.7874200 2.3470790 0.6312751 0.4192341

 15.3731026 168.5556700 3.4434363 0.9261535 0.0086887

 15.6476637 152.4265800 3.7179974 1.0000000 0.0000000

34

 :
 :

 X(20) X Y r r/h weight

 13.2728619 152.6110700 5.3137735 1.0000000 0.0000000
 14.2767453 160.7874200 4.3098901 0.8110790 0.1014766

 15.3731026 168.5556700 3.2135328 0.6047553 0.4724078

 15.6476637 152.4265800 2.9389717 0.5530856 0.5734607
 18.5605355 221.7070200 0.0260999 0.0049117 0.9999996
 18.5866354 18.5866354 222.6904000 0.0000000 0.0000000 1.0000000

 18.7572812 243.1882800 0.1706458 0.0321139 0.9999006

 X(21) X Y r r/h weight
 13.2728619 152.6110700 5.4844193 1.0000000 0.0000000

 14.2767453 160.7874200 4.4805359 0.8169572 0.0940394

 15.3731026 168.5556700 3.3841786 0.6170532 0.4477921
 15.6476637 152.4265800 3.1096175 0.5669912 0.5467900

 18.5605355 221.7070200 0.1967457 0.0358736 0.9998615

 18.5866354 222.6904000 0.1706458 0.0311147 0.9999096
 18.7572812 18.7572812 243.1882800 0.0000000 0.0000000 1.0000000

Locally Weighted Linear Regression - Cleveland’s Method

After the local weights have been determined for each of the q nearest neighbours of the smoothing point sx

a least squares linear regression is performed to determine 0 1ŝ sy xβ β= + . The usual least squares approach

is to form the normal equations (16) and then solve these equation to give 0 1,β β from (17). Another method

– and the one used by Cleveland (1981) in his FORTRAN routine LOWESS (see Appendix G) – is explained

below.

For the 1,2, 3, ,j q= … nearest neighbours, normal equations of the form (16) can be written in terms of

normalized weights jw∗ and reduced coordinates jx defined as

j

j
j

w
w

w
∗ =
∑

 (70)

 j jx x g= − (71)

where
j j

j

w x
g

w

∗

∗
=
∑
∑

 is a weighted mean and the normal equations (16) can be written as

() ()
() ()

0 1

2
0 1

j j j j j

j j j j j j j

w w x w y

w x w x w x y

β β

β β

+ =

+ =
∑ ∑ ∑
∑ ∑ ∑

 (72)

We now show that (i) 1jw∗ =∑ and (ii) 0j jw x∗ =∑ .

(i) Since
j

j
j

w
w

w
∗ =
∑

 then
1 21 2 1

q jn
j

j j j j j

w w w ww w w
w

w w w w w
∗

+ + +
= + + + = = =

∑∑ ∑ ∑ ∑ ∑ ∑
⋯

⋯

(ii) Since
j j

j

w x
g

w

∗

∗
=
∑
∑

 and 1jw∗ =∑ then j jg w x∗= ∑ . Also, ()j j j j j j jw x w x g w x w g∗ ∗ ∗ ∗= − = − .

 So 0j j j j j j j jw x w x w g w x g w g g∗ ∗ ∗ ∗ ∗= − = − = − =∑ ∑ ∑ ∑

Using these results in (72) gives the solutions

35

 0 1 2
 and

j j j
j j

j j

w x y
w y

w x
β β

∗
∗

∗
= =

∑∑
∑

 (73)

For the smoothing point (),s sx y the estimate 0 1ŝ sy xβ β= + and using (73) we may write

2 2

ˆ
j j j s

s j j s j j j j j

j j j j

w x y x
y w y x w y w x y

w x w x

∗
∗ ∗ ∗

∗ ∗

  = + = +    

∑∑ ∑ ∑
∑ ∑

 (74)

Let
2

s

j j

x
b

w x∗
=
∑

 then (74) becomes

()
() () ()
() () ()

1 1 2 2 1 1 1 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2

ˆ

1 1 1

s j j j j j

q q q q q

q q q q

q q q

y w y b w x y

w y w y w y b w x y w x y w x y

y w bw x y w bw x y w bw x

w bx y w bx y w bx y

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

= +

= + + + + + + +

= + + + + + +

= + + + + + +

∑ ∑
⋯ ⋯

⋯

⋯ (75)

With the substitution ()1j j jW w bx∗= + in (75) the estimate at the smoothing point (),s sx y is given by

 1 1 2 2
1

ˆ
q

s q q j j
j

y W y W y W y W y
=

= + + + =∑⋯ (76)

The following GNU Octave code shows how this method of computing the estimate ŝy can be employed.

(The code follows after the data has been read from a text file and the number of data pairs N determined;

see for example, the Octave program M_estimate in Appendix F.)

f = 0.35; set the value of f

q = floor(f*N); q is the number of nearest neighbours

Nleft = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning

Nright = q; Nright = q is index of the right edge of window at beginning

i = 1 i is the index of the first smoothing point

Yhat = zeros(N,1) zero the vector of y-estimates

do do the smoothing

 while (Nright < N) N is the number of points in the data set

 d1 = X(i) – X(Nleft); d1 is distance to left edge of window

 d2 = X(Nright+1) – X(i); d2 is distance to right edge of window

 break don't move the window; exit while loop
 endif

 Nleft = Nleft+1; move the window one place to the right and repeat
 Nright = Nright+1;

 endwhile

 Xs = X(i); Xs = X(i) is the smoothing point

 h = max(Xs-X(Nleft), X(Nright)-Xs); maximum distance from smoothing point

 w = zeros(N,1); zero the vector of weights

 sw = 0; set sum of weights to zero
 for j = Nleft:1:Nright

 r = abs(X(j)-Xs); distance from smoothing point to a nearest neighbour

 w(j) = (1-(r/h)^3)^3; Tricube weight function
 sw = sw + w(j)

 endfor

 g = 0; set weighted mean g to zero
 for j = Nleft:1:Nright
 w(j) = w(j)/sw; normalize weights

 g = g + w(j)*X(j); accumulate weighted mean
 endfor

36

 Xbar = Xs-g reduced x-value at smoothing point

 c = 0; factor c = sum of weighted squared reduced coordinates
 for j = Nleft:1:Nright
 c = c + w(j)*(X(j)-g)^2; accumulate factor c
 endfor

 b = Xbar/c; factor b
 for j = Nleft:1:Nright
 w(j) = w(j)*(1 + b*(X(j)-g)); calculate modified weights
 endfor

 Ys = 0; set the y-estimate at the smoothing point to zero
 for j = Nleft:1:Nright
 Ys = Ys + w(j)*Y(j); accumulate the y-estimate at the smoothing point
 endfor
 Yhat(i) = Ys;

 last = i; set index of last point

 i = max(last+1,i-1); set index of new smoothing point
until (last >= N)

fprintf('\n\n non-Robust LOWESS smoothing');

fprintf('\n N = %2d data pairs\n f = %4.2f and f*N = %8.4f',N,f,f*N);

fprintf('\n q = %3d',q);
fprintf('\n\n point X Y Y-estimate residual');

for i = 1:1:N

 fprintf('\n %2d %12.7f %12.7f %12.7f %12.7f',i,X(i),Y(i),Yhat(i),Yhat(i)-Y(i));
endfor

fprintf('\n\n');
endfunction

The printed output for the NIST data is shown below

non-Robust LOWESS smoothing

 N = 21 data pairs
 f = 0.35 and f*N = 7.3500

 q = 7

 point X Y Y-estimate residual

 1 0.5578196 18.6365400 20.5930234 1.9564834
 2 2.0217271 103.4964600 107.1603072 3.6638472

 3 2.5773252 150.3539100 139.7673812 -10.5865288

 4 3.4140288 190.5103100 174.2630435 -16.2472665

 5 4.3014084 208.7011500 207.2333825 -1.4677675
 6 4.7448394 213.7113500 216.6615860 2.9502360

 7 5.1073781 228.4935300 220.5444798 -7.9490502
 8 6.5411662 233.5538700 229.8606930 -3.6931770

 9 6.7216176 234.5505400 229.8347130 -4.7158270
 10 7.2600583 223.8922500 229.4301158 5.5378658

 11 8.1335874 227.6833900 226.6044590 -1.0789310

 12 9.1224379 223.9198200 220.3904099 -3.5294101
 13 11.9296663 168.0199900 172.3479994 4.3280094
 14 12.3797674 164.9575000 163.8416613 -1.1158387

 15 13.2728619 152.6110700 161.8489707 9.2379007

 16 14.2767453 160.7874200 160.3350837 -0.4523363
 17 15.3731026 168.5556700 160.1919893 -8.3636807
 18 15.6476637 152.4265800 161.0555925 8.6290125

 19 18.5605355 221.7070200 227.3399559 5.6329359

 20 18.5866354 222.6904000 227.8985350 5.2081350
 21 18.7572812 243.1882800 231.5585563 -11.6297237

37

Robust Weighting using Tukey’s bisquare weighting function

Lowess uses robust weighting as in M-estimation and the GNU Octave code below uses Tukey’s bisquare

weighting function (49) written as

 ()

2
2

1 for

0 for

i
i

i

i

r
r cMAD

w r cMAD

r cMAD

      − ≤ =      >

 (77)

where i ir v= and ˆi i iv y y= − is the residual of the ith point, and 6 MADcMAD = × is a constant where

MAD is the Median Absolute Deviation [see (56) and (57)].

[We have shown in Appendix E that if the residuals are considered as normally distributed random variables

then ˆ 1.4826 MADσ = × is a measure of the scale S of the distribution. Also, in a previous section, we have

shown that the constant cMAD cS= where c is a tuning constant and that 4.685c = is associated with

95% efficiency of the estimation process. So ()4.685 1.4826 MAD 6.9 MADcMAD = × ≈ × would be an

appropriate value. But we have used 6 MAD× in accordance with Cleveland’s FORTRAN routine

LOWESS – see Appendix G.]

The following GNU Octave code shows how the robust weighting technique of M-estimation is used in

computing the estimate ŝy but the routine does not continue until the robustness weights converge to

acceptable values, as in M-estimation, but instead is terminated when the user selected number of iterations

have been performed. (The code follows after the data has been read from a text file and the number of data

pairs N determined; see for example, the Octave program M_estimate in Appendix F.)

Yhat = zeros(N,1); set the vector of y-estimates to zeros

V = zeros(N,1); set the vector of residuals to zeros

rw = zeros(N,1); set the vector of robustness weights to ones

Nsteps = 5; set the number of iterations for robust smoothing
if (Nsteps > 0)

 rwFlag = 1; set robust weighting flag to 1 (Yes)
else

 rwFlag = 0; set robust weighting flag to 0 (No)
endif

f = 0.35; set the value of f

q = floor(f*N); q is the number of nearest neighbours
for iter = 1:1:Nsteps+1
 Nleft = 1; Nleft = 1 is index of left edge of window of nearest neighbours at beginning

 Nright = q; Nright = q is index of the right edge of window at beginning

 i = 1 i is the index of the first smoothing point

 Yhat = zeros(N,1) zero the vector of y-estimates

 do do the smoothing

 while (Nright < N) N is the number of points in the data set

 d1 = X(i) – X(Nleft); d1 is distance to left edge of window

 d2 = X(Nright+1) – X(i); d2 is distance to right edge of window

 break don't move the window; exit while loop
 endif

 Nleft = Nleft+1; move the window one place to the right and repeat
 Nright = Nright+1;
 endwhile

 Xs = X(i); Xs = X(i) is the smoothing point

 h = max(Xs-X(Nleft), X(Nright)-Xs); maximum distance from smoothing point

 w = zeros(N,1); zero the vector of weights

 sw = 0; set sum of weights to zero
 for j = Nleft:1:Nright

 r = abs(X(j)-Xs); distance from smoothing point to a nearest neighbour

38

 w(j) = (1-(r/h)^3)^3; Tricube weight function
 sw = sw + w(j)

 endfor

 g = 0; set weighted mean g to zero
 for j = Nleft:1:Nright
 w(j) = w(j)/sw; normalize weights

 g = g + w(j)*X(j); accumulate weighted mean
 endfor

 Xbar = Xs-g reduced x-value at smoothing point

 c = 0; factor c = sum of weighted squared reduced coordinates
 for j = Nleft:1:Nright
 c = c + w(j)*(X(j)-g)^2; accumulate factor c
 endfor

 b = Xbar/c; factor b
 for j = Nleft:1:Nright
 w(j) = w(j)*(1 + b*(X(j)-g)); calculate modified weights
 endfor

 Ys = 0; set the y-estimate at the smoothing point to zero
 for j = Nleft:1:Nright
 Ys = Ys + w(j)*Y(j); accumulate the y-estimate at the smoothing point
 endfor
 Yhat(i) = Ys;

 last = i; set index of last point

 i = max(last+1,i-1); set index of new smoothing point
 until (last >= N)

 for i = 1:1:N calculate residuals
 V(i) = Yhat(i)-Y(i);

 endfor

 if (iter > Nsteps)

 break break out of robust weighting iterations
 endif

 M = median(V); median of residuals

 MAD = median(abs(V-M)); Median Absolute Deviation

 cMad = 6*MAD; scaled MAD

 rw = zeros(N,1); set robustness weights to zeros

 for i = 1:1:N calculate robustness weights using Tukey’s bisquare weight function
 r = abs(V(i));

 if (r < cMAD)
 rw(i) = (1-(r/cMAD)^2)^2;

 endif

 endfor

endfor
fprintf('\n\n Robust LOWESS smoothing (Nsteps = %d)',Nsteps);

fprintf('\n N = %2d data pairs\n f = %4.2f and f*N = %8.4f',N,f,f*N);

fprintf('\n q = %3d',q);
fprintf('\n\n point X Y Y-estimate residual robustness

weight');
for i = 1:1:N

 fprintf('\n %2d %12.7f %12.7f %12.7f %12.7f %12.7f',i,X(i),Y(i),Yhat(i),V(i),rw(i));
endfor

fprintf('\n\n');

endfunction

39

The printed output for the NIST data is shown below. Five iterations (Nsteps = 5) have been performed.

Robust LOWESS smoothing (Nsteps = 5)
 N = 21 data pairs

 f = 0.35 and f*N = 7.3500

 q = 7

 point X Y Y-estimate residual robustness weight
 1 0.5578196 18.6365400 20.6551527 2.0186127 0.9895680

 2 2.0217271 103.4964600 103.9751637 0.4787037 0.9963422
 3 2.5773252 150.3539100 134.7299161 -15.6239939 0.5121817

 4 3.4140288 190.5103100 169.0957071 -21.4146029 0.1922493

 5 4.3014084 208.7011500 206.1487447 -2.5524053 0.9849495
 6 4.7448394 213.7113500 216.5930028 2.8816528 0.9780853
 7 5.1073781 228.4935300 220.4298309 -8.0636991 0.8338874

 8 6.5411662 233.5538700 229.9081014 -3.6457686 0.9646841

 9 6.7216176 234.5505400 229.8972567 -4.6532833 0.9427907

 10 7.2600583 223.8922500 229.5064520 5.6142020 0.9177364
 11 8.1335874 227.6833900 226.6535746 -1.0298154 0.9971393
 12 9.1224379 223.9198200 220.4756693 -3.4441507 0.9683663

 13 11.9296663 168.0199900 172.5318044 4.5118144 0.9467907

 14 12.3797674 164.9575000 164.1343938 -0.8231062 0.9980534
 15 13.2728619 152.6110700 162.1911642 9.5800942 0.7713345

 16 14.2767453 160.7874200 160.5850453 -0.2023747 0.9998549
 17 15.3731026 168.5556700 160.3520721 -8.2035979 0.8271475
 18 15.6476637 152.4265800 161.3406845 8.9141045 0.8008079

 19 18.5605355 221.7070200 225.6130682 3.9060482 0.9545332

 20 18.5866354 222.6904000 226.1507976 3.4603976 0.9636372

 21 18.7572812 243.1882800 229.6746851 -13.5135949 0.5857118

The results after 10 iterations are

 Robust LOWESS smoothing (Nsteps = 10)

 N = 21 data pairs

 f = 0.35 and f*N = 7.3500
 q = 7

 point X Y Y-estimate residual robustness weight

 1 0.5578196 18.6365400 20.8918425 2.2553025 0.9804132
 2 2.0217271 103.4964600 97.8762540 -5.6202060 0.8885292

 3 2.5773252 150.3539100 127.1199816 -23.2339284 0.0000000
 4 3.4140288 190.5103100 163.7367673 -26.7735427 0.0000000

 5 4.3014084 208.7011500 207.1509806 -1.5501694 0.9909172
 6 4.7448394 213.7113500 216.5717074 2.8603574 0.9698759

 7 5.1073781 228.4935300 220.3210533 -8.1724767 0.7612847

 8 6.5411662 233.5538700 229.9355900 -3.6182800 0.9511953

 9 6.7216176 234.5505400 229.9325762 -4.6179638 0.9211339
 10 7.2600583 223.8922500 229.5451478 5.6528978 0.8822693

 11 8.1335874 227.6833900 226.6777472 -1.0056428 0.9962241

 12 9.1224379 223.9198200 220.5304649 -3.3893551 0.9571822
 13 11.9296663 168.0199900 172.6406648 4.6206748 0.9200485

 14 12.3797674 164.9575000 164.2856560 -0.6718440 0.9984832
 15 13.2728619 152.6110700 162.3987606 9.7876906 0.6681681

 16 14.2767453 160.7874200 160.8112132 0.0237932 0.9999964
 17 15.3731026 168.5556700 160.6282215 -7.9274485 0.7748588

 18 15.6476637 152.4265800 161.7823610 9.3557810 0.6968977

 19 18.5605355 221.7070200 223.7810807 2.0740607 0.9840663

 20 18.5866354 222.6904000 224.2973629 1.6069629 0.9904772
 21 18.7572812 243.1882800 227.6806356 -15.5076444 0.2952219

Points 3, 4 and 21 could be considered as outliers because of their zero or low weight and relatively large

residuals and perhaps the measurements at these points scrutinised.

40

The GNU Octave code used above to show how Lowess smoothing can be done makes very little or no use of

Octave’s matrix capabilities. Instead, we have chosen to follow closely the style of Cleveland’s FORTRAN

routines LOWESS and LOWEST that he made available from the Computing Information Library at Bell

Laboratories (Cleveland 1981). Copies of Cleveland’s programs can be discovered from Internet searches and

we have shown the result of such a search in Appendix G that contains Ratfor7 versions of LOWESS and

LOWEST as well as the FORTRAN code. Cleveland’s routines are more sophisticated than our Octave code

and can accommodate multiple y-values (for a single x-value), and very large data sets that can be processed

efficiently by grouping data in blocks. Also, various implementations of Lowess can be found on the

Internet. Some that use robust estimation and others that do not; in which case those implementations

would be classified as Loess routines employing local weighting schemes only.

Conclusion

Lowess is a useful robust weighted regression smoothing algorithm for (),x y scatterplot data assuming errors

in the y-values only and is based on M-estimation incorporating Iteratively Reweighted Least Squares

(IRLS). To properly explain Lowess we have given a brief history and explanation of the theory of least

squares with some examples to demonstrate its application in linear regression and shown that least squares

estimates are equivalent to Best Linear Unbiased Estimates and Maximum Likelihood Estimates. In

addition, we have given an introduction to M-estimation incorporation robust weighting functions and IRLS

and some information and examples on the use of Median Absolute Deviation (MAD) as a robust estimator

of scale of a distribution. Our explanation of these topics is supported by several appendices with technical

detail. Finally, with the aid of GNU Octave code, we have given a detailed explanation of the Lowess

smoothing procedure.

References

Banas, M. and Ligas, M., (2014), ‘Empirical tests of performance of some M-estimators’, Geodesy and

Cartography, Vol. 63, No. 2, pp. 127-146.

 https://www.degruyter.com/downloadpdf/j/geocart.2014.63.issue-2/geocart-2014-0010/geocart-2014-

0010.pdf

Beaton, A.E. and Tukey, J.W., (1974), ‘The fitting of power series, meaning of polynomials, illustrated on

band-spectroscopic data’, Technometrics, Vol. 16, No. 2 (May, 1974), pp. 147-185.

Cleveland, W.S., (1979), ‘Robust locally weighted regression and smoothing scatterplots’, Journal of the

American Statistical Association, Vol. 74, No. 368 (Dec., 1979), pp. 829-836

 http://home.eng.iastate.edu/~shermanp/STAT447/Lectures/Cleveland%20paper.pdf [accessed 23 Sep

2019]

——————— (1981), ‘LOWESS: A program for smoothing scatterplots by robust locally weighted

regression’, The American Statistician, Vol. 35, No. 1 (Feb., 1981), p. 54

Cleveland, W.S. and Devlin, S.J., (1988), ‘Locally weighted regression: an approach to regression analysis by

local fitting’, Journal of the American Statistical Association, Vol. 83, No. 403 (Sep., 1988), pp. 596-

610

 https://www.stat.washington.edu/courses/stat527/s13/readings/Cleveland_Delvin_JASA_1988.pdf

[accessed 19-Dec-2019]

Cross, P.A., (1994), ‘Advanced least squares applied to position fixing’, Working Paper No. 6, University of

East London, Department of Land Surveying.

7 Ratfor (short for Rational Fortran) is a programming language implemented as a pre-processor for Fortran

66. It provided modern control structures, unavailable in Fortran 66, to replace GOTO’s and statement

numbers (Wikipedia)

41

 https://seabedhabitats.files.wordpress.com/2011/10/cross_1994.pdf [accessed 07-Oct-2019]

Davis, P.J., (1959), ‘Leonhard Euler’s Integral: A historical profile of the Gamma function: In Memoriam:

Milton Abramowitz’, The American Mathematical Monthly, Vol. 66, No. 10 (Dec., 1959), pp. 849-869.

 http://sgpwe.izt.uam.mx/files/users/uami/jdf/proyectos/Euler_integral.pdf [accessed 31-May-2020]

Draper, N.R. and Smith, H., (1981), Applied Regression Analysis, Second Edition, John Wiley & Sons, New

York.

Gauss, C.F., (1809), Theory of the Motion of the Heavenly Bodies Moving About the Sun in Conic Sections,

A Translation of Gauss’ “Theoria Motus.” with an Appendix by Charles Henry Davis, Little, Brown

and Company, Boston, 1857.

Hogg, R.V., (1979), ‘Statistical robustness: One view of its use in applications today’, The American

Statistician, Vol. 33, No. 3, pp. 108-115.

 https://www.soa.org/globalassets/assets/library/research/actuarial-research-clearing-house/1978-

89/1979/arch-3/arch79v34.pdf [accessed 02-Oct-2019]

Huber, P.J., (1964), ‘Robust estimation of a location parameter’, Annals of Mathematical Statistics, Vol. 35,

pp. 73-111.

————— (1981), Robust Statistics, John Wiley & Sons, New York.

Lagrange, Joseph-Louis, (1788), Méchanique Analytique, 2 Vols, Paris.

https://www.irphe.fr/~clanet/otherpaperfile/articles/Lagrange/N0029071_PDF_1_530.pdf [accessed

27-Mar-2017]

Laplace, P.S., (1820), Théorie Analytique des Probabilités, §24, pp. 94-96 in Œuvres completes de Laplace, de

L’académie des Sciences, tome Septiéme, Paris, 1886.

 https://ia802300.us.archive.org/15/items/theorieanaldepro00laplrich/theorieanaldepro00laplrich.pdf

[accessed 20 Oct 2019]

Lee, P.M., The Probability Integral, Department of Mathematics, University of York, United Kingdom,.

Website URL <https://www.york.ac.uk/depts/maths/histstat/> [accessed 20 Oct 2019]

Legendre, A.M., (1805), Nouvelles Méthodes pour la Détermination des Orbites des Cométes, Appendice: Sur

la Méthode des moindres quarries, pp. 72-80, Paris 1805

 http://www.bibnum.education.fr/sites/default/files/legendre-texte.pdf [accessed 28-Jan-2018]

Mikhail, E.M., 1976, Observations and Least Squares, IEP―A Dun-Donnelley, New York

Nahin, P.J., (2015), Inside Interesting Integrals, Springer.

NIST/SEMATECH, (2013), NIST/SEMATECH e-Handbook of Statistical Methods,

 http://www.itl.nist.gov/div898/handbook/, [accessed 20 Oct 2019]

Peterson, K.B, and Pederson, M.S., The Matrix Cookbook, Version: November 15, 2012

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Peyam, (2018), Integral 1/x^n+1 from 0 to infinity, YouTube video, March 24, 2018, 0h10m38s.

 https://www.youtube.com/watch?v=xro7c-mDk1g [accessed 23 Oct 2019]

Plackett, R.L., 1972, 'Studies in the history of probability and statistics. XXIX The discovery of the method

of least squares', Biometrika, Vol. 59, No. 2, pp. 239-251.

Rousseeuw, P.J., (1984), ‘Least median of squares regression’, Journal of the American Statistical

Association, Vol. 79, No. 388 (Dec., 1984), pp. 871-880.

Rousseeuw, P.J. and Croux, C., (1993), ‘Alternatives to the median absolute deviation’, Journal of the

American Statistical Association, Vol. 88, No. 424 (Dec., 1993), pp. 1273-1283.

 https://wis.kuleuven.be/stat/robust/papers/publications-1993/rousseeuwcroux-

alternativestomedianad-jasa-1993.pdf [accessed 15-Nov-2019]

42

Rousseeuw, P.J. and Leroy, A.M., (1987), Robust Regression and Outlier Detection, John Wiley & Son, New

York.

Stigler, S.M., 1981, 'Gauss and the invention of least squares', The Annals of Statistics, Vol. 9., No. 3, pp.

465-474

 https://projecteuclid.org/download/pdf_1/euclid.aos/1176345451 [accessed 28-Jan-2018]

Tellambura, C. and Annamalai, A., (2000), ‘Efficient computation of ()erfc x for large arguments’,

Transaction Letters in IEEE Transactions on Communications, Vol. 48, No. 4, April 2000, pp. 529-

532.

 https://pdfs.semanticscholar.org/6430/6133b68cb18d9951cf402d90f5fb7ab62f7c.pdf [accessed 31 Oct

2019]

Todhunter, I., (1865), A History of the Mathematical Theory of Probability from the time of Pascal to that of

Laplace, Cambridge and London, Macmillan and Co., art 899, p. 481.

 https://archive.org/details/ofmathemahistory00todhrich/page/n6 [accessed 20 Oct 2019]

Yohai, V.J., (1987), ‘High breakdown-point and high efficiency robust estimates for regression’, The Annals

of Statistics, Vol. 15, No. 20, pp. 642-656.

https://projecteuclid.org/download/pdf_1/euclid.aos/1176350366

43

Appendix A: Global Warming Trend Line Data

Table A1 shows the data for Figure 1. The values in the columns headed Anomaly are temperature

anomalies in oC related to a global average for the years 1951-1980. The values in the columns headed

Lowess are robust estimates of anomalies using the Lowess smoothing procedure.

Year Anomaly Lowess
1880 -0.16 -0.09
1881 -0.08 -0.12
1882 -0.10 -0.16
1883 -0.16 -0.19
1884 -0.28 -0.23
1885 -0.32 -0.25
1886 -0.30 -0.26
1887 -0.35 -0.26
1888 -0.16 -0.26
1889 -0.10 -0.25
1890 -0.34 -0.24
1891 -0.22 -0.25
1892 -0.26 -0.26
1893 -0.31 -0.25
1894 -0.29 -0.23
1895 -0.21 -0.21
1896 -0.10 -0.19
1897 -0.10 -0.17
1898 -0.25 -0.15
1899 -0.16 -0.16
1900 -0.07 -0.19
1901 -0.15 -0.22
1902 -0.27 -0.25
1903 -0.36 -0.28
1904 -0.46 -0.31
1905 -0.26 -0.34
1906 -0.22 -0.36
1907 -0.39 -0.37
1908 -0.43 -0.39
1909 -0.49 -0.41
1910 -0.43 -0.41
1911 -0.44 -0.39
1912 -0.36 -0.35
1913 -0.34 -0.32
1914 -0.15 -0.31

Year Anomaly Lowess
1915 -0.14 -0.30
1916 -0.36 -0.30
1917 -0.46 -0.30
1918 -0.30 -0.30
1919 -0.28 -0.29
1920 -0.27 -0.28
1921 -0.19 -0.26
1922 -0.28 -0.25
1923 -0.26 -0.24
1924 -0.27 -0.23
1925 -0.22 -0.22
1926 -0.10 -0.22
1927 -0.22 -0.21
1928 -0.20 -0.20
1929 -0.36 -0.19
1930 -0.16 -0.19
1931 -0.09 -0.19
1932 -0.16 -0.18
1933 -0.28 -0.17
1934 -0.13 -0.16
1935 -0.20 -0.14
1936 -0.15 -0.11
1937 -0.03 -0.06
1938 0.00 -0.01
1939 -0.02 0.03
1940 0.13 0.06
1941 0.19 0.09
1942 0.07 0.11
1943 0.09 0.10
1944 0.20 0.07
1945 0.09 0.04
1946 -0.07 0.00
1947 -0.03 -0.04
1948 -0.11 -0.07
1949 -0.11 -0.08

Year Anomaly Lowess
1950 -0.17 -0.08
1951 -0.07 -0.07
1952 0.01 -0.07
1953 0.08 -0.07
1954 -0.13 -0.07
1955 -0.14 -0.06
1956 -0.19 -0.05
1957 0.05 -0.04
1958 0.06 -0.01
1959 0.03 0.02
1960 -0.02 0.03
1961 0.06 0.02
1962 0.04 -0.01
1963 0.05 -0.02
1964 -0.20 -0.04
1965 -0.11 -0.05
1966 -0.06 -0.06
1967 -0.02 -0.05
1968 -0.08 -0.03
1969 0.05 -0.02
1970 0.02 -0.01
1971 -0.08 0.00
1972 0.01 0.00
1973 0.16 -0.00
1974 -0.07 0.00
1975 -0.01 0.02
1976 -0.10 0.04
1977 0.18 0.07
1978 0.07 0.12
1979 0.16 0.16
1980 0.26 0.20
1981 0.32 0.21
1982 0.14 0.22
1983 0.31 0.21
1984 0.16 0.21

Year Anomaly Lowess
1985 0.12 0.22
1986 0.18 0.24
1987 0.32 0.27
1988 0.38 0.30
1989 0.27 0.33
1990 0.45 0.33
1991 0.40 0.32
1992 0.22 0.33
1993 0.23 0.33
1994 0.31 0.34
1995 0.45 0.37
1996 0.33 0.40
1997 0.46 0.42
1998 0.61 0.45
1999 0.39 0.47
2000 0.40 0.50
2001 0.54 0.53
2002 0.63 0.55
2003 0.62 0.59
2004 0.54 0.61
2005 0.68 0.62
2006 0.64 0.63
2007 0.66 0.63
2008 0.54 0.64
2009 0.66 0.64
2010 0.72 0.65
2011 0.61 0.66
2012 0.64 0.70
2013 0.68 0.74
2014 0.75 0.79
2015 0.90 0.83
2016 1.02 0.87
2017 0.92 0.91
2018 0.85 0.95
2019 0.98 0.98

Table 1. NASA/GISS Global Land-Ocean Temperature Index 1880-2019
https://data.giss.nasa.gov/gistemp/graphs/graph_data/Global_Mean_Estimates_

based_on_Land_and_Ocean_Data/graph.txt

LOWESS for Surveyors

44

Appendix B: The Gaussian or Normal Distribution

Gauss (1809) defines an error M V∆ = − where M is a measurement and V is a function of unknown

quantities whose values are to be determined. He then proposes that ()φ ∆ be a function of these (random)

errors that will assign a probability for each error and describes the general form this function should take: it

should have a maximum value for 0∆ = ; it should be equal, generally, for equal and opposite values of ∆ ;

and it should converge to zero, asymptotically, as ∆ becomes a large positive number or a large negative

number. He then states that the probability that an error lies between the limits ∆ and d∆ ∆+ is

()dφ ∆ ∆ and that the integral () 1dφ ∆ ∆

+∞

−∞

=∫ .

These are the basic properties of a probability density function (pdf), and Gauss then deduces the form of

()φ ∆ from axioms associated with the measurement process as () 2 2hke ∆φ ∆ −= where k is a constant and h

is a measure of precision and since () 1dφ ∆ ∆

+∞

−∞

=∫ then
2 2

1hk e d∆ ∆

+∞
−

−∞

=∫ , and, acknowledging the elegant

theorem first discovered by Laplace that the integral
2 2he d

h
∆ π
∆

+∞
−

−∞

=∫ , [see Appendix C], then determines

the constant k since
2 2

1hk e d k
h

∆ π
∆

+∞
−

−∞

= =∫ giving
h

k
π

= and the error function or pdf as

 () 2 2hh
e ∆φ ∆
π

−= (78)

The curve of the error function ()φ ∆ is the familiar bell-shaped curve associated with probability and the

Gaussian distribution (see Figure B1).

It is now usual to think of a random variable X taking values x drawn from an infinite population with mean

µ and variance 2σ and with random errors x∆ µ= − from a population with precision 2

2

1

2
h

σ
= equation

(78) becomes

 ()
2

1
21

2

x

Xf x e

µ

σ

σ π

 −  −    = (79)

This is the modern form of the pdf of the Gaussian distribution which is now commonly called the Normal

distribution and the notation ()2,X N µ σ∼ is taken to mean the random variable X is normally distributed

with a mean µ and variance 2σ .

LOWESS for Surveyors

45

Figure B1. Normal probability density functions for a random variable ()2,X N µ σ∼ where the left-hand

curve is 1, 0.5µ σ= = , the middle curve is 2, 2µ σ= = and the right-hand curve is 5, 1µ σ= =

The area under the probability density curve is unity, i.e., () 1Xf x dx

+∞

−∞

=∫ , that can be verified as follows:

() ()
1
2

0 0

2
2

2

x

X Xf x dx f x dx e dx

µ

σ

σ π

 −+∞ ∞ ∞  −    

−∞

= =∫ ∫ ∫ and letting
x

t
µ

σ

−
= then

dx
dt

σ
=

or dx dtσ= and ()
2 2

0

2

2

t

Xf x dx e dt
π

+∞ ∞
−

−∞

=∫ ∫ . Now using the probability integral

2 2 1
2

0

2
t

e dt π

∞
− =∫ [see Appendix C, equation (100)] it follows that () 1Xf x dx

+∞

−∞

=∫ .

And the probability that a random variable X lies between any two values x a= and x b= is the area

under the density curve between these two values and is written as

 () ()
2

1
21

Pr
2

xx b b

X

x a a

a X b f x dx e dx

µ

σ

σ π

 −=  −    

=

< < = =∫ ∫ (80)

For continuous random variables X with probability density function (pdf) ()Xf x , the cumulative

distribution function (cdf) ()XF x has the following properties

 1. () () ()Pr

x

X XF x X x f x dx

−∞

= ≤ = ∫

 2. () ()X X

d
F x f x

dx
=

For the Normal distribution with pdf ()
2

1
21

2

x

Xf x e

µ

σ

σ π

 −  −    = the cumulative distribution function is

LOWESS for Surveyors

46

x

q

µ

f ()x
X

1

0.8

0.6

0.4

0.2

0
x

p
ro

ba
bi

li
ty

0.5 •

midpoint

p

q

µ

()xF
X

 ()
2

1
21

2

xx

XF x e dx

µ

σ

σ π

 −  −    

−∞

= ∫ (81)

The curve of the Normal cumulative distribution function is a sigmoid or s-shaped curve symmetric about

the mean µ and asymptotic to the lines () 0XF x = and () 1XF x =

Figure B2. Normal cumulative density functions for a random variable ()2,X N µ σ∼ where 2, 2µ σ= =

The probability p of a random variable ()2,X N µ σ∼ taking a value q≤ is shown schematically in Figure

B3 as; (i) the shaded area under the curve of the pdf on the left, and (ii) the value p on the ()XF x axis

corresponding to the value q on the x-axis of the curve of the cdf on the right and

 ()
2

1
21

2

xx q

Xp F q e dx

µ

σ

σ π

 −=  −    

−∞

= = ∫ (82)

Figure B3. Schematic diagram of the ()Pr X q≤

LOWESS for Surveyors

47

Transforming the random variable X to random variable Z using the transformation

X

Z
µ

σ

−
= (83)

gives

() () ()

2

1
2

Pr Pr Pr

1
exp

2

z

X

z

X
Z z z X z F u du

X
du

µ σ

µ σ

µ
µ σ

σ

µ

σσ π

+

−∞
+

−∞

 − ≤ = ≤  = ≤ + =   
   −  = −         

∫

∫

Put u vµ σ= + , where 0σ > , then du dvσ= and

 () { }21
2

1
Pr exp

2

z

Z z v dv
π −∞

≤ = −∫ (84)

By symmetry

()
21

2

2

1
2

0

2
1 1
2 2

0

1
2

1
2

1

2

2

1 erf
2

1 erf
2

z
v

Z

z

v

F z e dv

e dv

z

x

π

π

µ

σ

−

−

= +

     = +      
   = +       
  −  = +       

∫

∫

 (85)

where () 2

0

2
erf

x

vx e dv
π

−= ∫ is the error function for 2x z= (see Appendix D)

For example, suppose that ()22,2X N∼ . What is the probability p that 3.6X ≤ ?

 () () ()()1
2

1 1 3.6 2 0.8
Pr 1 erf where

22 2 2 2
X

z x
p F q X q q q

µ

σ

   − −  = = ≤ = + = =  =  =       

 ()() ()1 1
2 2

1 erf 1 0.576289 0.788145p q= + = + =

GNU Octave has function erf() and the probability p (above) can be computed from the following

instructions in the GNU Octave Command Window.

>> root2 = sqrt(2);

>> mu = 2;

>> sigma = 2;
>> x = 3.6;
>> z = (x - mu)/sigma

z = 0.8

>> erf = erf(z/root2)
erf = 0.5762892028332066

>> p = 0.5*(1 + erf)
p = 0.7881446014166034

>>

LOWESS for Surveyors

48

Appendix C: The Probability Integral

Laplace’s theorem

Gauss (1809, p. 258) credits Pierre-Simon Laplace (1749–1827) with first discovering the theorem that gives

the solution to the integral

2 2he d

h
∆ π
∆

+∞
−

−∞

=∫ (86)

This theorem is given in Théorie Analytique des Probabilities (Laplace 1820, p. 96) as

 () ()
()

22

0 0
1

sin

n nr n rt tn t e dt t e dt
r

n

π

π

∞ ∞
− −− − =

 −     

∫ ∫ (87)

And for 2, 2r n= = (87) becomes
2

2

0

4 te dt π

∞
−

    =    
∫ and as Laplace notes ‘cette formule donne ce résultant

remarquable’ (this formula gives this remarkable result)

2 1

2
0

te dt π

∞
− =∫ (88)

Now let 2 2t au= where a is a positive constant and 2 2t dt audu= giving
u a

dt a du du
t a

= = since

1u

t a
= and

2 2 1
2

0 0

t aua
e dt e du

a
π

∞ ∞
− −= =∫ ∫ , and with a change of variable

2

0

1

2
ate dt

a

π
∞
− =∫ (89)

The integral result (86) shown in Gauss (1809) is obtained from (89) by first noting that

2 2

0

2at ate dt e dt π

+∞ ∞
− −

−∞

= =∫ ∫ and then letting t ∆= then 2a h= giving

2 2he d

h
∆ π
∆

+∞
−

−∞

=∫

In the derivation of his theorem (87) Laplace makes use of the double integral

 ()1

0 0

ns x

x s

I e ds dx

∞ ∞
− +

= =

= ∫ ∫ (90)

Evaluating the integral ()1

0

ns x

s

e ds

∞
− +

=
∫ using the rule

ax
ax e

e dx
a

=∫ gives

() ()1 1

00

1 1 1
0

1 1 1

n n
s

s x s x

n n n
ss

e ds e
x x x

∞ =∞
− + − +

==

    = − = − −  =     + + + 
∫ and substituting this result into (90)

gives

0
1 n

x

dx
I

x

∞

=

=
+∫

LOWESS for Surveyors

49

Laplace then states that this integral is equal to

sinn
n

π

π     

 where n is any integer or fractional number. This

can be verified by numerical methods and Peyam (2018) has a YouTube video showing the solution with the

aid of Euler’s Gamma function and Beta function. Using this result in (90) gives

 ()1

0 0 sin

ns x

x s

I e dsdx

n
n

π

π

∞ ∞
− +

= =

= =
     

∫ ∫ (91)

Separating the integrals in (91) gives

0 0 sin

ns sx

s x

e ds e dx

n
n

π

π

∞ ∞
− −

= =

        =                

∫ ∫ (92)

With the substitution n nsx t= in the 2nd integral of (92) then 1 1n nnsx dx nt dt− −= and
n nsx t

dx dt
x t

= or

x
dx dt

t
= . But, since n nsx t= then

1
n

x

t s

   =   
 and

1

1
n

x

t s
= giving

1

1
n

dx dt
s

= and

1
0 0

1n nsx t

n
x t

e dx e dt
s

∞ ∞
− −

= =

=∫ ∫ . Substituting this result into (92) gives

1

0 0 sin

n
s

t

n
s t

e
ds e dt

s n
n

π

π

∞ ∞−
−

= =

        =                

∫ ∫ (93)

Letting ns t= in the 1st integral of (93) then 1nds nt dt−= and ()11 nn ns t t= = and

2

1
0 0

n
s

n t

n
s t

e
ds n t e dt

s

∞ ∞−
− −

= =

=∫ ∫ . Substituting this result into (93) gives

 2

0 0 sin

n nn t t

t t

n t e dt e dt

n
n

π

π

∞ ∞
− − −

= =

=
     

∫ ∫ (94)

Replacing n with
1

n

r −
 in (94) gives

()() ()() ()() ()

()
1 1

2
1 22

0 0

1

1
sin

n r n rn r t t

t t

r
n t e dt e dt

r

n

π

π

− −
∞ ∞

− − − −

= =

−
=

 −     

∫ ∫

And replacing t with 1rt − gives (Laplace, 1820, p.96)

 () ()
()

22

0 0
1

sin

n nr n rt tn t e dt t e dt
r

n

π

π

∞ ∞
− −− − =

 −     

∫ ∫ (87)

LOWESS for Surveyors

50

An Alternative derivation of Laplace’s Theorem

One of the authors, Max Hunter, has a lovely derivation of Laplace’s Theorem that begins with the definition

of Euler’s Gamma function

 () 1

0

z tz t e dt

∞
− −Γ = ∫ (95)

[This integral arose from studies by Euler in 1729 to find an expression for !n as an integral wherein values

other than positive integers may be substituted. The Greek Γ (gamma) is due to A.M. Legendre (1752–

1833) and this integral is also known as the second Eulerian integral. The first Eulerian integral is the Beta

function. Davis (1959) has a nice history of Euler’s Gamma function and it is likely that Laplace knew of

and used Euler’s integral, but perhaps didn’t see the connection with his theorem.]

Let nt p= then 1ndt np dp−= and after some algebra the integral becomes

 () 1

0

, for 0
nnz pz n p e dp z

∞
− −Γ = >∫ (96)

Now, in (95) replacing t with s and z with 1 z− gives

 ()
0

1 z sz s e dz

∞
− −Γ − = ∫

Let ns q= then 1nds nq dq−= and

 () ()11

0

1
nn z qz n q q e dq

∞
−− −Γ − = ∫ (97)

Multiplying (96) and (97) together gives

 () () ()1 12 1

0 0

1 for 0 1
n nn znz p qz z n p e dp q e dq z

∞ ∞
− −− − −Γ Γ − = < <∫ ∫

and using Euler’s reflection formula (Davis 1959)

 () ()1
sin

z z
z

π

π
Γ Γ − =

we may write

 ()1 12 1

0 0

 for 0 1
sin

n nn znz p qn p e dp q e dq z
z

π

π

∞ ∞
− −− − − = < <∫ ∫ (98)

Let
1r

z
n

−
= where 1 1r n< < + and n is a positive integer then 1 2nz r− = − , ()1 1n z n r− − = − ,

and (98) becomes

()

2 2

0 0
1

sin

n nr p n r qn p e dp q e dq
r

n

π

π

∞ ∞
− − − − =

 −     

∫ ∫ (99)

which is Laplace’s Theorem (87)

LOWESS for Surveyors

51

The Probability Integral

An important integral in probability theory is the probability integral and it has several forms, two of which

are:

22 21 1

2 2
0 0

: or : 2
ttA e dt B e dtπ π

∞ ∞
−− = =∫ ∫ (100)

To obtain A use Laplace’s theorem (87) with 2, 2r n= = as shown above [see (88)].

To obtain B use (89) with 1
2

a =

This result (B) is also obtained (in a number of ways) by the late Professor P.M. Lee (1940–2017) of the

University of York, who references both Laplace (1820) and Todhunter (1865). And Paul J. Nahin has

several interesting derivations of these results in his book Inside Interesting Integrals.

Appendix D: The Error Function ()erf x and the Complimentary Error

Function ()erfc x

Suppose a random variable X has a Gaussian probability density function (pdf) of the form

 () 2ax
X

a
f x e

π

−=

The area under the density curve is unity that can be verified as follows:

() () 2

0 0

2 2 ax
X X

a
f x dx f x dx e dx

π

+∞ ∞ ∞
−

−∞

= =∫ ∫ ∫ and letting t a x= then dt a dx= or

dt
dx

a
= and () 2

0

2 t
Xf x dx e dt

π

+∞ ∞
−

−∞

=∫ ∫ . Now using the probability integral

2 1
2

0

te dt π

∞
− =∫ [see Appendix B, equation (100)] it follows that () 1Xf x dx

+∞

−∞

=∫ .

The cumulative distribution function (cdf) () () ()Pr

x

X XF x X x f x dx

−∞

= ≤ = ∫ and

 () () () 2 21 1 1
2 2 2

0 0 0

1
Pr

x x x a

au t
X X

a
F x X x f u du e du e dt

π π

− −= ≤ = + = + = +∫ ∫ ∫

using a u t= , a du dt= where 0a > , then

 () ()()1
2

1 erfXF x x a= +

where () 2

0

2
erf

x a

tx a e dt
π

−= ∫ is the Error Function for the pdf () 2ax
X

a
f x e

π

−= .

The error function for the random variable ()2,X N u σ∼ where the pdf is ()
2

1
21

2

x

Xf x e

µ

σ

σ π

 −  −    = is

2

0

2
erf where

2 2

t

tx x
e dt t

µ µ

σ π σ

− − −  = =    ∫ and () 1
Pr 1 erf

2 2

x
X x

µ

σ

  −  ≤ = +       

LOWESS for Surveyors

52

The error function for the random variable ()0,1Z N∼ where the pdf is ()
21

2
1

2

z

Zf z e
π

−= is

2

0

2
erf where

2 2

t

tz z
e dt t

π

−   = =    ∫ and () 1
Pr 1 erf

2 2

z
Z z

   ≤ = +       
.

In general, the Error Function ()erf x is defined as

 () 2

0

2
erf

x

tx e dt
π

−= ∫ (101)

And noting that () 2 2 2 2

0 0

2 2 2
erf 1

x

t t t t

x x

x e dt e dt e dt e dt
π π π

∞ ∞ ∞
− − − −

    = = − = −     
∫ ∫ ∫ ∫ the Complimentary

Error Function ()erfc x is defined as

 () () 22
erfc 1 erf t

x

x x e dt
π

∞
−= − = ∫ (102)

The integral in the error function () 2

0

2
erf

x

tx e dt
π

−= ∫ cannot be evaluated in terms of elementary

functions but instead is evaluated by numerical methods depending on series expansions of the exponential

function xe

Expanding xe using Maclaurin’s theorem gives the convergent series

2 3

0

1
! 2! 3!

n
x

n

x x x
e x x

n

∞

=

= = + + + + −∞ < < ∞∑ ⋯

Hence

()2

2 4 6
2

0

1
1

! 2! 3!

n n
t

n

t t t
e t

n

∞
−

=

−
= = − + − +∑ ⋯

Substitution into the integral and evaluating gives

() ()

()
()
()

2
2 2 1 2 1

0 0 00 0
0

1 1 1

! 2 1 ! 2 1 !

x
n n nx x n n n

t

n n n

t t x
e dt dt

n n n n n

+ +∞ ∞ ∞
−

= = =

 − − − 
= = = 

 + +
  

∑ ∑ ∑∫ ∫

And the error function

 ()
()
()

2 1 3 5 7 9

0

12 2
erf

2 1 ! 1 0! 3 1! 5 2! 7 3! 9 4 !

n n

n

x x x x x x
x

n nπ π

+∞

=

 −   = = − + − + −  + ⋅ ⋅ ⋅ ⋅ ⋅  
∑ ⋯ (103)

This series converges rapidly for small values of x ()say 1x < and since it is an alternating series an upper

bound of the error committed in truncating the series is the first term omitted.

LOWESS for Surveyors

53

For larger values of x ()say 1x > the approach is to use the complimentary error function (102) as an

indirect method of computing ()erf x since () ()erfc 1 erfx x= − and Tellambura & Annamalai (2000, eqn

(12), p. 530) provide an efficient convergent series for ()erfc x

 () ()
2 2 2

2 2 2 2
1

1
erfc 2

n Nx n h

a
n

hxe e
x x

x n h x
ε

π

=− −

=

  = + +   + 
∑ (104)

where N is the series truncation point, h is ‘sampling factor’ (the method is based on Shannon sampling

theory) and ()a xε is the total approximation error which is bounded. The authors provide a formula for the

error bound and show that this bound depends on the three parameters x, h and N and state: “for fixed h and

N, the error bound decreases with increasing x. This suggests that once suitable values for h and N are

chosen for, say, 0x x= , those values can be used for all 0x x≥ .” Tellambura & Annamalai (2000) provide

a table of values that has been reproduced here as Table C1.

0x h N ()0erfc x RE ()0a xε bound

1 0.24 19 1.57299207050(1) 5(11) 8(11) 4(7)

2 0.43 10 4.67773498105(3) 7(11) 8(13) 2(8)

3 0.54 8 2.20904969985(5) 5(11) 1(15) 1(8)

4 0.6 7 1.54172579002(8) 5(11) 8(19) 5(11)

5 0.6 7 1.53745979442(12) 2(11) 3(23) 6(15)

8 0.6 7 1.12242971729(29) 5(11) 5(40) 7(32)

10 0.6 7 2.088487583762(45) 5(11) 1(55) 2(47)

Table C1. Use of (104) to compute ()erfc x . Parameters h and N to achieve a

relative error less than 101 10−× for all 0x x≥

In Table C1, the relative error is defined as
()
()erfc

a x
RE

x

ε
= , ()a n denotes 10 na −× , bound is the error

bound and the reference error function ()0erfc x is from a standard Maple implementation.

For a given x there exists an optimum h value for the use of (104) and Tellambura & Annamalai (2000,

section C, p. 531) have empirically determined suitable h and N so that the relative error is less than 1010−

using Maple with 200-digit precision.

Most mathematical software packages (Maple, Mathematica, Matlab, R, etc.) have functions to compute the

error function ()erf x and the complimentary error function ()erfc x . GNU Octave has functions erf() and

erfc() that give the following results in the Octave Command Window.

>> format long g
>> a = erf(0.5)

a = 0.5204998778130465

>> b = erfc(0.5)

b = 0.4795001221869535
>> a + b

ans = 1

>>

LOWESS for Surveyors

54

Using equations (103) and (104) the following function written in GNU Octave computes values for the error

functions ()erf x and ()erfc x .

function erff(x)

%

% function erff(x) computes the error function erf(x) and the
% complimentary error function erfc(x) using numerical routines in

% Appendix C, LOWESS for Surveyors

%--

if (x < 1)

 % use equation (71) to compute erf(x)

 x2 = x*x;
 numerator = x;
 factorial = 1;

 sum = x;

 sign = 1;
 for n = 2:25

 sign = -sign;

 numerator = numerator*x2;
 denominator = (2*n-1)*factorial;
 factorial = factorial*n;

 sum = sum + sign*numerator/denominator;

 end
 erff = 2/sqrt(pi)*sum
 % compute complimentary error function erfc(x) = 1 – erf(x)

 erffc = 1-erff

else
 % use equation (72) to compute erfc(x) and then erf(x) = 1-erfc(x)

 N = 25;

 h = 0.24;
 h2 = h*h;
 x2 = x*x;

 sum = 0;

 for n = 1:N
 k = n*n*h2;
 sum = sum + exp(-k)/(k+x2);

 end

 erffc = h*x*exp(-x2)/pi*(1/x2+2*sum);
 % compute error function erf(x) = 1 – erfc(x)

 erff = 1-erffc

 erffc
endif
end

The Octave Command Window shows the results:

>> erff(0.5)

erff = 0.5204998778130465
erffc = 0.4795001221869535
>>

These are identical (to the 16th decimal) with the Octave functions erf() and erfc().

LOWESS for Surveyors

55

Appendix E: Population Median and Median Absolute Deviation (MAD)

The derivation of the probability statements () 1
Pr MAD

2
X µ− ≤ = and

MAD 3
Pr

4
Z

σ

  ≤  =   
 are the

work of one of the co-authors, Dr Max Hunter, who turned his keen eye and talent for rigour to a topic not

often treated in the statistical literature. It’s a joy.

Let X be a random variable with density function ()Xf x and distribution function ()XF x , so that

() ()
x

X XF x f y dy

−∞

= ∫ , or () ()X X

d
F x f x

dx
= .

The population median m is defined by the solution of the integral equation

 () () () 1
Pr

2

m

X XX m F m f x dx

−∞

≤ = = =∫ (105)

The alternative equation

 () 1

2X

m

f x dx

∞

=∫ (106)

Can also be used to define m.

Let the random variable Y be defined by

, if

0
, if

X m X m
Y X m

m X X m

 − ≥≤ = − =  − <

And suppose its density function is ()Yg y with distribution function ()YG y . Then for 0y ≥ ,

() ()
()
()
()
() ()
() ()

Pr

Pr

Pr

Pr

Pr Pr

Y

X X

G y Y y

X m y

y X m y

m y X m y

X m y X m y

F m y F m y

= ≤

= − ≤

= − ≤ − ≤
= − ≤ ≤ +

= ≤ + − ≤ −
= + − −

And for ()0, 0Yy G y< = .

Hence for 0y ≥

 () () () (){ } () ()Y Y X X X X

d d
g y G y F m y F m y f m y f m y

dy dy
= = + − − = + + −

and () 0Yg y = for 0y < .

The population median M of the random variable Y satisfies the equation

 () 1

2

M

Yg y dy

−∞

=∫

And

LOWESS for Surveyors

56

() () () ()

() (){ }

() ()

()

0

0 0

0

 (with substitutions ,)

M M M

Y Y Y Y

M

X X

m M m M

X X

m m
m M

X

m M

g y dy g y dy g y dy g y dy

f m y f m y dy

f s ds f t dt s m y t m y

f s ds

−∞ −∞

+ −

+

−

= + =

= + + −

= − = + = −

=

∫ ∫ ∫ ∫

∫

∫ ∫

∫

and therefore

 () 1

2

m M

X

m M

f s ds

+

−

=∫ (107)

Suppose now that ()Xf x is symmetric about the origin then 0m = from (105). So by (107)

 () ()
0

1
2

2

M M

X X

M

f x dx f x dx

−

= =∫ ∫

and therefore

 ()
0

1

4

M

Xf x dx =∫

Thus the interval ,M M −  encloses an area of 0.5 under the density function for X, or since

 () 3

4

M

Xf x dx

−∞

=∫ ,

M is the 75 percentile of X.

But M is just the definition of MAD, so for any random variable X with population mean { }E X µ= and a

symmetric density function about { }E X µ=

 () 1
Pr MAD

2
X µ− ≤ = (108)

Now

() MAD
Pr MAD Pr

MAD
Pr

MAD MAD
Pr by definition of modulus

MAD MAD
Pr Pr by symmetry

MAD MAD
=Pr 1 Pr

X
X

Z

Z

Z Z

Z Z

µ
µ

σ σ

σ

σ σ

σ σ

σ σ

 −  − ≤ = ≤   
 = ≤    
 = − ≤ ≤    
     = ≤  − ≤ −        
   ≤  − − ≤    

 by definition

MAD
2Pr 1Z

σ

     
 = ≤  −   

and, using (108)

LOWESS for Surveyors

57

MAD 3

Pr
4

Z
σ

  ≤  =   
 (109)

If ()Zf z is the density function of the standard normal distribution and ()ZF z is the distribution function

(see Appendix B) then

 1MAD 3

4ZF
σ

−  =    
 (110)

Where 1
ZF− denotes the standard normal inverse cumulative distribution function. Most mathematical

software packages (Maple, Mathematica, Matlab, R, etc.) have functions to compute inverse cumulative

distribution functions and for the standard normal distribution GNU Octave has a function norminv() that

computes the value of ()1
ZF x− and for ()1MAD 3 4ZFσ −= can be computed from the following

instructions in the Octave Command Window.

>> format long g

>> MAD_on_sigma = norminv(3/4)

MAD_on_sigma = 0.6744897501960818
>>

And

 1 8
M

0.67448975019608
AD 3

1
4ZF

σ

−  =  ≈   
 (111)

Inspection of (58) leads to

 1.482602218505602
MAD

b
σ

= ≈ (112)

We can use this relationship to estimate the standard deviation from

 ()ˆ MAD 1.4826 MADbσ = × ≈ (113)

LOWESS for Surveyors

58

Appendix F: GNU Octave function M_estimate

function M_estimate
%
% M_estimate regression

%

% two data files are available:
% (1) Data Set from Rousseeuw & Leroy (Belgium Telephone Dataset)

% c:\temp\belgium data.txt
% (2) Dataset from G.W. Dombi

% c:\temp\biweight data.txt

%==

% Function: M_estimate
%
% Author:

% Rod Deakin,

% DUNSBOROUGH, WA, 6281
% AUSTRALIA

% email: randm.deakin@gmail.com
%

% Date:
% Version 1.0 18 November 2019

%

% Remarks:
% This function uses M-estimation (Iterative Reweighted Least Squares with
% Tukey's bisquare weight function) to find the parameters beta0 and beta1 of

% the regression line y = beta0 + beta1*x.

% Initial values of beta0, beta1 are calculated using Least Squares (unit

% weights).
%
% References:

%
% Arrays:

% newW - (n,1) vector of new weights

% Time - (n,1) vector of times
% V - (n,1) vector of residuals V = Yhat-Y
% W - (n,1) vector of weights

% X - (n,1) vector of X-values beginning at 1

% Y - (n,1) vector of Y-values

% Yhat - (n,1) vector of estimates
%
% Variables:

% b - multiplier for MAD where S = b*MAD

% beta0 - intercept b0 on Y-axis
% beta1 - gradient b1 of straight line Y(j) = beta0 + beta1*X(j)

% c - tuning constant (c = 4.685 for Tukey's biweight)
% iter - iteration number
% j - integer counter

% k - scale factor for residuals k = c*S

% LSbeat0 - b0 for Least Squares estimate

% LSbeta1 - b1 for Least Squares estimate
% M - median of sample
% MAD - Median of the Absolute Deviations of the sample from its median

% Mbeat0 - b0 for M-estimate

% Mbeta1 - b1 for M-estimate
% n - number of elements in time series

% offset - difference between X values beginning at 0 and vector Time
% S - estimate of scale S = b*MAD
% sumW - sum of weights

% sumWX - sum of W(j)*X(j)

% sumWY - sum of W(j)*Y(j)

% sumWXY - sum of W(j)*X(j)*Y(j)
% sumWX2 - sum of W(j)*X(j)*X(j)
% test - test = sum(W) for iteration convergence

% u - scaled residuals: u = V(j)/k

LOWESS for Surveyors

59

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Read data from text file %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%---

% 1. Call the User Interface (UI) to choose the input data file name
% 2. Concatenate strings to give the path and file name of the input file

% 3. Strip off the extension from the file name to give the rootName

% 4. Add extension ".out" to rootName to give the output filename

% 5. Concatenate strings to give the path and file name of the output file
%---

filepath = strcat('c:\temp\','*.txt');

[infilename,inpathname] = uigetfile(filepath);

infilepath = strcat(inpathname,infilename);
rootName = strtok(infilename,'.');
outfilename = strcat(rootName,'.out');

outfilepath = strcat(inpathname,outfilename);

%--

% 1. Load the data into an array whose name is the rootName

% 2. set fileTemp = rootName
% 3. Copy columns of data into individual arrays

%--

fileTemp = load(infilepath);

Time = fileTemp(:,1);
Y = fileTemp(:,2);

%%%

% Compute the M-estimate regression line y = b0 + b1*x %%
%%%

% determine the number of data points
n = length(Time);

% calculate the offset to reduce the Time vector to vector X beginning at 0

offset = Time(1); % for Belgium Telephone Dataset
X = Time-offset; % for Belgium Telephone Dataset
%X = Time; % for G.W. Dombi dataset

% set vector of weights at unity for initial solution
W = ones(n,1);

% set tuning constant

c = 4.685;

% set multiplier for MAD where S = b*MAD

b = 1.4826; % for Belgium Telephone Dataset
%b = 1; % for G.W. Dombi dataset
test = sum(W);

iter = 0;

while (1)

 % determine least squares line of best fit: Yhat(j) = beat0 + beta1*X(j)
 sumW = sum(W);

 sumWX = sum(W.*X);
 sumWY = sum(W.*Y);

 sumWXY = sum((W.*X).*Y);

 sumWX2 = sum((W.*X).*X);
 % compute parameters beta0 (Y-intercept) and beta1 (gradient)
 beta0 = (sumWX2*sumWY-sumWX*sumWXY)/(sumW*sumWX2-sumWX^2)

 beta1 = (sumW*sumWXY-sumWX*sumWY)/(sumW*sumWX2-sumWX^2)

 if iter == 0

 % set parameters of the Least Squares line of best fit (equal weights)
 LSbeta0 = beta0;

 LSbeta1 = beta1;
 endif

LOWESS for Surveyors

60

 % compute estimates Yhat

 Yhat = beta0 + (beta1.*X);

 % compute residuals
 V = Yhat-Y;
 % compute median of residuals

 M = median(V);
 % compute Median Absolute Deviation

 MAD = median(abs(V-M));

 % compute scale factor k

 S = b*MAD;
 k = c*S;

 % compute new weights W using Tukey's bisquare weight function

 newW = zeros(n,1);
 for j = 1:n
 u = V(j)/k;

 if (abs(u) > 1)

 newW(j) = 0;
 else

 newW(j) = (1-u^2)^2;

 endif
 end

 % test the new weights newW to see if iterative process has converged

 if abs(newW-W) < 1e-6
 break;
 endif

 if iter > 30

 fprintf('\nIteration for weights W failed to converge after 30 iterations\n\n');
 break;

 endif

 % update weights and iteration number
 W = newW;
 iter = iter+1;

endwhile

% set parameters of straight line from M-estimate
Mbeta0 = beta0;
Mbeta1 = beta1;

% print results
fprintf('\n\nM-estimation using Iteratively Reweighted Least Squares with');

fprintf('\nTukey''s biweight function');
fprintf('\nweights converged after %2d iterations',iter);

fprintf('\ninitial parameters b0 = %9.6f and b1 = %9.6f',LSbeta0,LSbeta1);
fprintf('\nfor the straight line y = b0 + b1*x from Least Squares solution with unit weights');

fprintf('\nFinal parameters b0 = %9.6f and b1 = %9.6f',Mbeta0,Mbeta1);

fprintf('\n Weights');
for j = 1:n
 fprintf('\n w(%2d) = %8.6f',j,W(j));

end

fprintf('\n\n');

%%%%%%%%%%%%%%
% plot data %%

%%%%%%%%%%%%%%

% Figure 1: Plot of data for Belgium Telephone Dataset

x1 = [Time(1):0.1:Time(n)];
y1 = LSbeta0 + LSbeta1.*(x1-offset);

x2 = x1;

y2 = Mbeta0 + Mbeta1.*(x2-offset);

figure(1);
clf(1);

hold on;
grid on;

box on;

LOWESS for Surveyors

61

% plot the data

plot(Time,Y,'ks','MarkerSize',3);

% plot the LS line of best fit
plot(x1,y1,'k--','linewidth',1);
% plot the M-estimate line of best fit

plot(x2,y2,'k-','linewidth',1);
% anotate the plot

title('Belgium Telephone Dataset')

xlabel('Year');

ylabel('Telephone calls (millions)');

end

Output from function M_estimate using the Belgium Telephone Dataset is shown below

M-estimation using Iteratively Reweighted Least Squares with
Tukey's biweight function
weights converged after 10 iterations

initial parameters b0 = -0.800000 and b1 = 0.504239
for the straight line y = b0 + b1*x from Least Squares solution with unit weights

Final parameters b0 = 0.259264 and b1 = 0.110004

 Weight
 w(1) = 0.908147

 w(2) = 0.976435

 w(3) = 0.999752

 w(4) = 0.999998
 w(5) = 0.995561
 w(6) = 0.981980

 w(7) = 0.965900
 w(8) = 0.936845

 Weight
 w(9) = 0.981974

 w(10) = 0.993012

 w(11) = 0.999751

 w(12) = 0.998768
 w(13) = 0.997291
 w(14) = 0.537191

 w(15) = 0.000000
 w(16) = 0.000000

 Weight
 w(17) = 0.000000

 w(18) = 0.000000

 w(19) = 0.000000

 w(20) = 0.000000
 w(21) = 0.000000
 w(22) = 0.919113

 w(23) = 0.998774
 w(24) = 0.965063

62

Appendix G: FORTRAN program LOWESS

https://github.com/andreas-h/pyloess/blob/master/src/lowess.f

* wsc@research.bell-labs.com Mon Dec 30 16:55 EST 1985 1
* W. S. Cleveland 2
* Bell Laboratories 3
* Murray Hill NJ 07974 4
* 5
* outline of this file: 6
* lines 1-72 introduction 7
* 73-177 documentation for lowess 8
* 178-238 ratfor version of lowess 9
* 239-301 documentation for lowest 10
* 302-350 ratfor version of lowest 11
* 351-end test driver and fortran version of lowess and lowest 12
* 13
* a multivariate version is available by "send dloess from a" 14
* 15
* COMPUTER PROGRAMS FOR LOCALLY WEIGHTED REGRESSION 16
* 17
* This package consists of two FORTRAN programs for 18
* smoothing scatterplots by robust locally weighted 19
* regression, or lowess. The principal routine is LOWESS 20
* which computes the smoothed values using the method 21
* described in The Elements of Graphing Data, by William S. 22
* Cleveland (Wadsworth, 555 Morego Street, Monterey, 23
* California 93940). 24
* 25
* LOWESS calls a support routine, LOWEST, the code for 26
* which is included. LOWESS also calls a routine SORT, which 27
* the user must provide. 28
* 29
* To reduce the computations, LOWESS requires that the 30
* arrays X and Y, which are the horizontal and vertical 31
* coordinates, respectively, of the scatterplot, be such that 32
* X is sorted from smallest to largest. The user must 33
* therefore use another sort routine which will sort X and Y 34
* according to X. 35
* To summarize the scatterplot, YS, the fitted values, 36
* should be plotted against X. No graphics routines are 37
* available in the package and must be supplied by the user. 38
* 39
* The FORTRAN code for the routines LOWESS and LOWEST has 40
* been generated from higher level RATFOR programs 41
* (B. W. Kernighan, ``RATFOR: A Preprocessor for a Rational 42
* Fortran,'' Software Practice and Experience, Vol. 5 (1975), 43
* which are also included. 44
* 45
* The following are data and output from LOWESS that can 46
* be used to check your implementation of the routines. The 47
* notation (10)v means 10 values of v. 48
* 49
* 50
* 51

63

* 52
* X values: 53
* 1 2 3 4 5 (10)6 8 10 12 14 50 54
* 55
* Y values: 56
* 18 2 15 6 10 4 16 11 7 3 14 17 20 12 9 13 1 8 5 19 57
* 58
* 59
* YS values with F = .25, NSTEPS = 0, DELTA = 0.0 60
* 13.659 11.145 8.701 9.722 10.000 (10)11.300 13.000 6.440 5.596 61
* 5.456 18.998 62
* 63
* YS values with F = .25, NSTEPS = 0 , DELTA = 3.0 64
* 13.659 12.347 11.034 9.722 10.511 (10)11.300 13.000 6.440 5.596 65
* 5.456 18.998 66
* 67
* YS values with F = .25, NSTEPS = 2, DELTA = 0.0 68
* 14.811 12.115 8.984 9.676 10.000 (10)11.346 13.000 6.734 5.744 69
* 5.415 18.998 70
* 71
* 72
* 73
* 74
* LOWESS 75
* 76
* 77
* 78
* Calling sequence 79
* 80
* CALL LOWESS(X,Y,N,F,NSTEPS,DELTA,YS,RW,RES) 81
* 82
* Purpose 83
* 84
* LOWESS computes the smooth of a scatterplot of Y against X 85
* using robust locally weighted regression. Fitted values, 86
* YS, are computed at each of the values of the horizontal 87
* axis in X. 88
* 89
* Argument description 90
* 91
* X = Input; abscissas of the points on the 92
* scatterplot; the values in X must be ordered 93
* from smallest to largest. 94
* Y = Input; ordinates of the points on the 95
* scatterplot. 96
* N = Input; dimension of X,Y,YS,RW, and RES. 97
* F = Input; specifies the amount of smoothing; F is 98
* the fraction of points used to compute each 99
* fitted value; as F increases the smoothed values 100
* become smoother; choosing F in the range .2 to 101
* .8 usually results in a good fit; if you have no 102
* idea which value to use, try F = .5. 103
* NSTEPS = Input; the number of iterations in the robust 104
* fit; if NSTEPS = 0, the nonrobust fit is 105
* returned; setting NSTEPS equal to 2 should serve 106
* most purposes. 107
* DELTA = input; nonnegative parameter which may be used 108

64

* to save computations; if N is less than 100, set 109
* DELTA equal to 0.0; if N is greater than 100 you 110
* should find out how DELTA works by reading the 111
* additional instructions section. 112
* YS = Output; fitted values; YS(I) is the fitted value 113
* at X(I); to summarize the scatterplot, YS(I) 114
* should be plotted against X(I). 115
* RW = Output; robustness weights; RW(I) is the weight 116
* given to the point (X(I),Y(I)); if NSTEPS = 0, 117
* RW is not used. 118
* RES = Output; residuals; RES(I) = Y(I)-YS(I). 119
* 120
* 121
* Other programs called 122
* 123
* LOWEST 124
* SSORT 125
* 126
* Additional instructions 127
* 128
* DELTA can be used to save computations. Very roughly the 129
* algorithm is this: on the initial fit and on each of the 130
* NSTEPS iterations locally weighted regression fitted values 131
* are computed at points in X which are spaced, roughly, DELTA 132
* apart; then the fitted values at the remaining points are 133
* computed using linear interpolation. The first locally 134
* weighted regression (l.w.r.) computation is carried out at 135
* X(1) and the last is carried out at X(N). Suppose the 136
* l.w.r. computation is carried out at X(I). If X(I+1) is 137
* greater than or equal to X(I)+DELTA, the next l.w.r. 138
* computation is carried out at X(I+1). If X(I+1) is less 139
* than X(I)+DELTA, the next l.w.r. computation is carried out 140
* at the largest X(J) which is greater than or equal to X(I) 141
* but is not greater than X(I)+DELTA. Then the fitted values 142
* for X(K) between X(I) and X(J), if there are any, are 143
* computed by linear interpolation of the fitted values at 144
* X(I) and X(J). If N is less than 100 then DELTA can be set 145
* to 0.0 since the computation time will not be too great. 146
* For larger N it is typically not necessary to carry out the 147
* l.w.r. computation for all points, so that much computation 148
* time can be saved by taking DELTA to be greater than 0.0. 149
* If DELTA = Range (X)/k then, if the values in X were 150
* uniformly scattered over the range, the full l.w.r. 151
* computation would be carried out at approximately k points. 152
* Taking k to be 50 often works well. 153
* 154
* Method 155
* 156
* The fitted values are computed by using the nearest neighbor 157
* routine and robust locally weighted regression of degree 1 158
* with the tricube weight function. A few additional features 159
* have been added. Suppose r is FN truncated to an integer. 160
* Let h be the distance to the r-th nearest neighbor 161
* from X(I). All points within h of X(I) are used. Thus if 162
* the r-th nearest neighbor is exactly the same distance as 163
* other points, more than r points can possibly be used for 164
* the smooth at X(I). There are two cases where robust 165

65

* locally weighted regression of degree 0 is actually used at 166
* X(I). One case occurs when h is 0.0. The second case 167
* occurs when the weighted standard error of the X(I) with 168
* respect to the weights w(j) is less than .001 times the 169
* range of the X(I), where w(j) is the weight assigned to the 170
* j-th point of X (the tricube weight times the robustness 171
* weight) divided by the sum of all of the weights. Finally, 172
* if the w(j) are all zero for the smooth at X(I), the fitted 173
* value is taken to be Y(I). 174
* 175
* 176
* 177
* 178
* subroutine lowess(x,y,n,f,nsteps,delta,ys,rw,res) 179
* real x(n),y(n),ys(n),rw(n),res(n) 180
* logical ok 181
* if (n<2){ ys(1) = y(1); return } 182
* ns = max0(min0(ifix(f*float(n)),n),2) # at least two, at most n points 183
* for(iter=1; iter<=nsteps+1; iter=iter+1){ # robustness iterations 184
* nleft = 1; nright = ns 185
* last = 0 # index of prev estimated point 186
* i = 1 # index of current point 187
* repeat{ 188
* while(nright<n){ 189
* # move nleft, nright to right if radius decreases 190
* d1 = x(i)-x(nleft) 191
* d2 = x(nright+1)-x(i) 192
* # if d1<=d2 with x(nright+1)==x(nright), lowest fixes 193
* if (d1<=d2) break 194
* # radius will not decrease by move right 195
* nleft = nleft+1 196
* nright = nright+1 197
* } 198
* call lowest(x,y,n,x(i),ys(i),nleft,nright,res,iter>1,rw,ok) 199
* # fitted value at x(i) 200
* if (!ok) ys(i) = y(i) 201
* # all weights zero - copy over value (all rw==0) 202
* if (last<i-1) { # skipped points -- interpolate 203
* denom = x(i)-x(last) # non-zero - proof? 204
* for(j=last+1; j<i; j=j+1){ 205
* alpha = (x(j)-x(last))/denom 206
* ys(j) = alpha*ys(i)+(1.0-alpha)*ys(last) 207
* } 208
* } 209
* last = i # last point actually estimated 210
* cut = x(last)+delta # x coord of close points 211
* for(i=last+1; i<=n; i=i+1){ # find close points 212
* if (x(i)>cut) break # i one beyond last pt within cut 213
* if(x(i)==x(last)){ # exact match in x 214
* ys(i) = ys(last) 215
* last = i 216
* } 217
* } 218
* i=max0(last+1,i-1) 219
* # back 1 point so interpolation within delta, but always go forward 220
* } until(last>=n) 221
* do i = 1,n # residuals 222

66

* res(i) = y(i)-ys(i) 223
* if (iter>nsteps) break # compute robustness weights except last time 224
* do i = 1,n 225
* rw(i) = abs(res(i)) 226
* call sort(rw,n) 227
* m1 = 1+n/2; m2 = n-m1+1 228
* cmad = 3.0*(rw(m1)+rw(m2)) # 6 median abs resid 229
* c9 = .999*cmad; c1 = .001*cmad 230
* do i = 1,n { 231
* r = abs(res(i)) 232
* if(r<=c1) rw(i)=1. # near 0, avoid underflow 233
* else if(r>c9) rw(i)=0. # near 1, avoid underflow 234
* else rw(i) = (1.0-(r/cmad)**2)**2 235
* } 236
* } 237
* return 238
* end 239
* 240
* 241
* 242
* 243
* 244
* LOWEST 245
* 246
* 247
* Calling sequence 248
* 249
* CALL LOWEST(X,Y,N,XS,YS,NLEFT,NRIGHT,W,USERW,RW,OK) 250
* 251
* Purpose 252
* 253
* LOWEST is a support routine for LOWESS and ordinarily will 254
* not be called by the user. The fitted value, YS, is 255
* computed at the value, XS, of the horizontal axis. 256
* Robustness weights, RW, can be employed in computing the 257
* fit. 258
* 259
* Argument description 260
* 261
* 262
* X = Input; abscissas of the points on the 263
* scatterplot; the values in X must be ordered 264
* from smallest to largest. 265
* Y = Input; ordinates of the points on the 266
* scatterplot. 267
* N = Input; dimension of X,Y,W, and RW. 268
* XS = Input; value of the horizontal axis at which the 269
* smooth is computed. 270
* YS = Output; fitted value at XS. 271
* NLEFT = Input; index of the first point which should be 272
* considered in computing the fitted value. 273
* NRIGHT = Input; index of the last point which should be 274
* considered in computing the fitted value. 275
* W = Output; W(I) is the weight for Y(I) used in the 276
* expression for YS, which is the sum from 277
* I = NLEFT to NRIGHT of W(I)*Y(I); W(I) is 278
* defined only at locations NLEFT to NRIGHT. 279

67

* USERW = Input; logical variable; if USERW is .TRUE., a 280
* robust fit is carried out using the weights in 281
* RW; if USERW is .FALSE., the values in RW are 282
* not used. 283
* RW = Input; robustness weights. 284
* OK = Output; logical variable; if the weights for the 285
* smooth are all 0.0, the fitted value, YS, is not 286
* computed and OK is set equal to .FALSE.; if the 287
* fitted value is computed OK is set equal to 288
* 289
* 290
* Method 291
* 292
* The smooth at XS is computed using (robust) locally weighted 293
* regression of degree 1. The tricube weight function is used 294
* with h equal to the maximum of XS-X(NLEFT) and X(NRIGHT)-XS. 295
* Two cases where the program reverts to locally weighted 296
* regression of degree 0 are described in the documentation 297
* for LOWESS. 298
* 299
* 300
* 301
* 302
* subroutine lowest(x,y,n,xs,ys,nleft,nright,w,userw,rw,ok) 303
* real x(n),y(n),w(n),rw(n) 304
* logical userw,ok 305
* range = x(n)-x(1) 306
* h = amax1(xs-x(nleft),x(nright)-xs) 307
* h9 = .999*h 308
* h1 = .001*h 309
* a = 0.0 # sum of weights 310
* for(j=nleft; j<=n; j=j+1){ # compute weights (pick up all ties on right) 311
* w(j)=0. 312
* r = abs(x(j)-xs) 313
* if (r<=h9) { # small enough for non-zero weight 314
* if (r>h1) w(j) = (1.0-(r/h)**3)**3 315
* else w(j) = 1. 316
* if (userw) w(j) = rw(j)*w(j) 317
* a = a+w(j) 318
* } 319
* else if(x(j)>xs)break # get out at first zero wt on right 320
* } 321
* nrt=j-1 # rightmost pt (may be greater than nright because of ties) 322
* if (a<=0.0) ok = FALSE 323
* else { # weighted least squares 324
* ok = TRUE 325
* do j = nleft,nrt 326
* w(j) = w(j)/a # make sum of w(j) == 1 327
* if (h>0.) { # use linear fit 328
* a = 0.0 329
* do j = nleft,nrt 330
* a = a+w(j)*x(j) # weighted center of x values 331
* b = xs-a 332
* c = 0.0 333
* do j = nleft,nrt 334
* c = c+w(j)*(x(j)-a)**2 335
* if(sqrt(c)>.001*range) { 336

68

* # points are spread out enough to compute slope 337
* b = b/c 338
* do j = nleft,nrt 339
* w(j) = w(j)*(1.0+b*(x(j)-a)) 340
* } 341
* } 342
* ys = 0.0 343
* do j = nleft,nrt 344
* ys = ys+w(j)*y(j) 345
* } 346
* return 347
* end 348
* 349
* 350
* 351
c test driver for lowess 352
c for expected output, see introduction 353
 double precision x(20), y(20), ys(20), rw(20), res(20) 354
 data x /1,2,3,4,5,10*6,8,10,12,14,50/ 355
 data y /18,2,15,6,10,4,16,11,7,3,14,17,20,12,9,13,1,8,5,19/ 356
 call lowess(x,y,20,.25,0,0.,ys,rw,res) 357
 write(6,*) ys 358
 call lowess(x,y,20,.25,0,3.,ys,rw,res) 359
 write(6,*) ys 360
 call lowess(x,y,20,.25,2,0.,ys,rw,res) 361
 write(6,*) ys 362
 end 363
c** 364
c Fortran output from ratfor 365
c 366
 subroutine lowess(x, y, n, f, nsteps, delta, ys, rw, res) 367
 integer n, nsteps 368
 double precision x(n), y(n), f, delta, ys(n), rw(n), res(n) 369
 integer nright, i, j, iter, last, mid(2), ns, nleft 370
 double precision cut, cmad, r, d1, d2 371
 double precision c1, c9, alpha, denom, dabs 372
 logical ok 373
 if (n .ge. 2) goto 1 374
 ys(1) = y(1) 375
 return 376
c at least two, at most n points 377
 1 ns = max(min(int(f*dble(n)), n), 2) 378
 iter = 1 379
 goto 3 380
 2 iter = iter+1 381
 3 if (iter .gt. nsteps+1) goto 22 382
c robustness iterations 383
 nleft = 1 384
 nright = ns 385
c index of prev estimated point 386
 last = 0 387
c index of current point 388
 i = 1 389
 4 if (nright .ge. n) goto 5 390
c move nleft, nright to right if radius decreases 391
 d1 = x(i)-x(nleft) 392
c if d1<=d2 with x(nright+1)==x(nright), lowest fixes 393

69

 d2 = x(nright+1)-x(i) 394
 if (d1 .le. d2) goto 5 395
c radius will not decrease by move right 396
 nleft = nleft+1 397
 nright = nright+1 398
 goto 4 399
c fitted value at x(i) 400
 5 call lowest(x, y, n, x(i), ys(i), nleft, nright, res, iter 401
 + .gt. 1, rw, ok) 402
 if (.not. ok) ys(i) = y(i) 403
c all weights zero - copy over value (all rw==0) 404
 if (last .ge. i-1) goto 9 405
 denom = x(i)-x(last) 406
c skipped points -- interpolate 407
c non-zero - proof? 408
 j = last+1 409
 goto 7 410
 6 j = j+1 411
 7 if (j .ge. i) goto 8 412
 alpha = (x(j)-x(last))/denom 413
 ys(j) = alpha*ys(i)+(1.D0-alpha)*ys(last) 414
 goto 6 415
 8 continue 416
c last point actually estimated 417
 9 last = i 418
c x coord of close points 419
 cut = x(last)+delta 420
 i = last+1 421
 goto 11 422
 10 i = i+1 423
 11 if (i .gt. n) goto 13 424
c find close points 425
 if (x(i) .gt. cut) goto 13 426
c i one beyond last pt within cut 427
 if (x(i) .ne. x(last)) goto 12 428
 ys(i) = ys(last) 429
c exact match in x 430
 last = i 431
 12 continue 432
 goto 10 433
c back 1 point so interpolation within delta, but always go forward 434
 13 i = max(last+1, i-1) 435
 14 if (last .lt. n) goto 4 436
c residuals 437
 do 15 i = 1, n 438
 res(i) = y(i)-ys(i) 439
 15 continue 440
 if (iter .gt. nsteps) goto 22 441
c compute robustness weights except last time 442
 do 16 i = 1, n 443
 rw(i) = dabs(res(i)) 444
 16 continue 445
 call ssort(rw,n) 446
 mid(1) = n/2+1 447
 mid(2) = n-mid(1)+1 448
c 6 median abs resid 449
 cmad = 3.D0*(rw(mid(1))+rw(mid(2))) 450

70

 c9 = .999999D0*cmad 451
 c1 = .000001D0*cmad 452
 do 21 i = 1, n 453
 r = dabs(res(i)) 454
 if (r .gt. c1) goto 17 455
 rw(i) = 1.D0 456
c near 0, avoid underflow 457
 goto 20 458
 17 if (r .le. c9) goto 18 459
 rw(i) = 0.D0 460
c near 1, avoid underflow 461
 goto 19 462
 18 rw(i) = (1.D0-(r/cmad)**2.D0)**2.D0 463
 19 continue 464
 20 continue 465
 21 continue 466
 goto 2 467
 22 return 468
 end 469
 470
 471
 subroutine lowest(x, y, n, xs, ys, nleft, nright, w, userw 472
 +, rw, ok) 473
 integer n 474
 integer nleft, nright 475
 double precision x(n), y(n), xs, ys, w(n), rw(n) 476
 logical userw, ok 477
 integer nrt, j 478
 double precision dabs, a, b, c, h, r 479
 double precision h1, dsqrt, h9, max, range 480
 range = x(n)-x(1) 481
 h = max(xs-x(nleft), x(nright)-xs) 482
 h9 = .999999D0*h 483
 h1 = .000001D0*h 484
c sum of weights 485
 a = 0.D0 486
 j = nleft 487
 goto 2 488
 1 j = j+1 489
 2 if (j .gt. n) goto 7 490
c compute weights (pick up all ties on right) 491
 w(j) = 0.D0 492
 r = dabs(x(j)-xs) 493
 if (r .gt. h9) goto 5 494
 if (r .le. h1) goto 3 495
 w(j) = (1.D0-(r/h)**3.D0)**3.D0 496
c small enough for non-zero weight 497
 goto 4 498
 3 w(j) = 1.D0 499
 4 if (userw) w(j) = rw(j)*w(j) 500
 a = a+w(j) 501
 goto 6 502
 5 if (x(j) .gt. xs) goto 7 503
c get out at first zero wt on right 504
 6 continue 505
 goto 1 506
c rightmost pt (may be greater than nright because of ties) 507

71

 7 nrt = j-1 508
 if (a .gt. 0.D0) goto 8 509
 ok = .false. 510
 goto 16 511
 8 ok = .true. 512
c weighted least squares 513
 do 9 j = nleft, nrt 514
c make sum of w(j) == 1 515
 w(j) = w(j)/a 516
 9 continue 517
 if (h .le. 0.D0) goto 14 518
 a = 0.D0 519
c use linear fit 520
 do 10 j = nleft, nrt 521
c weighted center of x values 522
 a = a+w(j)*x(j) 523
 10 continue 524
 b = xs-a 525
 c = 0.D0 526
 do 11 j = nleft, nrt 527
 c = c+w(j)*(x(j)-a)**2 528
 11 continue 529
 if (dsqrt(c) .le. .0000001D0*range) goto 13 530
 b = b/c 531
c points are spread out enough to compute slope 532
 do 12 j = nleft, nrt 533
 w(j) = w(j)*(b*(x(j)-a)+1.D0) 534
 12 continue 535
 13 continue 536
 14 ys = 0.D0 537
 do 15 j = nleft, nrt 538
 ys = ys+w(j)*y(j) 539
 15 continue 540
 16 return 541
 end 542
 543
 544
 subroutine ssort(a,n) 545
 546
C Sorting by Hoare method, C.A.C.M. (1961) 321, modified by Singleton 547
C C.A.C.M. (1969) 185. 548
 double precision a(n) 549
 integer iu(16), il(16) 550
 integer p 551
 552
 i =1 553
 j = n 554
 m = 1 555
 5 if (i.ge.j) goto 70 556
c first order a(i),a(j),a((i+j)/2), and use median to split the data 557
 10 k=i 558
 ij=(i+j)/2 559
 t=a(ij) 560
 if(a(i) .le. t) goto 20 561
 a(ij)=a(i) 562
 a(i)=t 563
 t=a(ij) 564

72

 20 l=j 565
 if(a(j).ge.t) goto 40 566
 a(ij)=a(j) 567
 a(j)=t 568
 t=a(ij) 569
 if(a(i).le.t) goto 40 570
 a(ij)=a(i) 571
 a(i)=t 572
 t=a(ij) 573
 goto 40 574
 30 a(l)=a(k) 575
 a(k)=tt 576
 40 l=l-1 577
 if(a(l) .gt. t) goto 40 578
 tt=a(l) 579
c split the data into a(i to l) .lt. t, a(k to j) .gt. t 580
 50 k=k+1 581
 if(a(k) .lt. t) goto 50 582
 if(k .le. l) goto 30 583
 p=m 584
 m=m+1 585
c split the larger of the segments 586
 if (l-i .le. j-k) goto 60 587
 il(p)=i 588
 iu(p)=l 589
 i=k 590
 goto 80 591
 60 il(p)=k 592
 iu(p)=j 593
 j=l 594
 goto 80 595
 70 m=m-1 596
 if(m .eq. 0) return 597
 i =il(m) 598
 j=iu(m) 599
c short sections are sorted by bubble sort 600
 80 if (j-i .gt. 10) goto 10 601
 if (i .eq. 1) goto 5 602
 i=i-1 603
 90 i=i+1 604
 if(i .eq. j) goto 70 605
 t=a(i+1) 606
 if(a(i) .le. t) goto 90 607
 k=i 608
 100 a(k+1)=a(k) 609
 k=k-1 610
 if(t .lt. a(k)) goto 100 611
 a(k+1)=t 612
 goto 90 613
 614
 end 615

73

